Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Nat Commun ; 15(1): 2254, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480689

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolate and characterize XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicate in IGROV-1 but no longer in Vero E6 and are not markedly fusogenic. They potently infect nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remain active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals are markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhances NAb responses against both XBB and BA.2.86 variants. JN.1 displays lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Epithelial Cells , Exercise
2.
J Clin Med ; 13(4)2024 Feb 10.
Article En | MEDLINE | ID: mdl-38398340

BACKGROUND: Myocarditis is commonly diagnosed in the intensive care cardiology unit (ICCU). No current recommendation nor guideline aids exist for aetiological assessments. METHODS: From September 2021 to October 2023, 84 patients with acute myocarditis underwent thorough and systematic serum and blood cell panel evaluations to determine the most common causes of myocarditis. RESULTS: Of the 84 patients (median age 34 years, range 22-41 years, 79% male), 16 presented with complicated myocarditis. The systematic aetiological assessment revealed that 36% of patients were positive for lupus anticoagulant, 12% for antinuclear antibodies, 8% for anti-heart antibodies, and 12% for anti-striated muscle antibodies. Viral serology did not yield any significant results. After the aetiological assessment, one patient was diagnosed with an autoimmune inflammatory disorder (Still's disease). T-cell subset analyses indicated that myocarditis severity tended to increase with the T-cell lymphopenia status. CONCLUSIONS: A comprehensive, systematic aetiological assessment was of limited value in terms of predicting the clinical or therapeutic outcomes in myocarditis patients presenting to the ICCU.

3.
JCI Insight ; 9(3)2024 Feb 08.
Article En | MEDLINE | ID: mdl-38194286

Neonatal gene therapy has been shown to prevent inner ear dysfunction in mouse models of Usher syndrome type I (USH1), the most common genetic cause of combined deafness-blindness and vestibular dysfunction. However, hearing onset occurs after birth in mice and in utero in humans, making it questionable how to transpose murine gene therapy outcomes to clinical settings. Here, we sought to extend the therapeutic time window in a mouse model for USH1G to periods corresponding to human neonatal stages, more suitable for intervention in patients. Mice with deletion of Ush1g (Ush1g-/-) were subjected to gene therapy after the hearing onset. The rescue of inner ear hair cell structure was evaluated by confocal imaging and electron microscopy. Hearing and vestibular function were assessed by recordings of the auditory brain stem response and vestibulo-ocular reflex and by locomotor tests. Up to P21, gene therapy significantly restored both the hearing and balance deficits in Ush1g-/- mice. However, beyond this age and up to P30, vestibular function was restored but not hearing. Our data show that effective gene therapy is possible in Ush1g-/- mice well beyond neonatal stages, implying that the therapeutic window for USH1G may be wide enough to be transposable to newborn humans.


Usher Syndromes , Vestibule, Labyrinth , Humans , Animals , Mice , Usher Syndromes/genetics , Usher Syndromes/therapy , Hearing , Genetic Therapy/methods
4.
bioRxiv ; 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38045308

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolated and characterized XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicated in IGROV-1 but no longer in Vero E6 and were not markedly fusogenic. They potently infected nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remained active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals were markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhanced NAb responses against both XBB and BA.2.86 variants. JN.1 displayed lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.

5.
J Virol ; 98(1): e0135123, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38088562

SARS-CoV-2 variants with undetermined properties have emerged intermittently throughout the COVID-19 pandemic. Some variants possess unique phenotypes and mutations which allow further characterization of viral evolution and Spike functions. Around 1,100 cases of the B.1.640.1 variant were reported in Africa and Europe between 2021 and 2022, before the expansion of Omicron. Here, we analyzed the biological properties of a B.1.640.1 isolate and its Spike. Compared to the ancestral Spike, B.1.640.1 carried 14 amino acid substitutions and deletions. B.1.640.1 escaped binding by some anti-N-terminal domain and anti-receptor-binding domain monoclonal antibodies, and neutralization by sera from convalescent and vaccinated individuals. In cell lines, infection generated large syncytia and a high cytopathic effect. In primary airway cells, B.1.640.1 replicated less than Omicron BA.1 and triggered more syncytia and cell death than other variants. The B.1.640.1 Spike was highly fusogenic when expressed alone. This was mediated by two poorly characterized and infrequent mutations located in the Spike S2 domain, T859N and D936H. Altogether, our results highlight the cytopathy of a hyper-fusogenic SARS-CoV-2 variant, supplanted upon the emergence of Omicron BA.1. (This study has been registered at ClinicalTrials.gov under registration no. NCT04750720.)IMPORTANCEOur results highlight the plasticity of SARS-CoV-2 Spike to generate highly fusogenic and cytopathic strains with the causative mutations being uncharacterized in previous variants. We describe mechanisms regulating the formation of syncytia and the subsequent consequences in a primary culture model, which are poorly understood.


COVID-19 , SARS-CoV-2 , Humans , Africa , COVID-19/virology , Pandemics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Giant Cells/virology
6.
J Synchrotron Radiat ; 31(Pt 1): 17-27, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37947304

In the energy production and transportation industries, numerous metallic structures may be subjected to at least several billions of cycles, i.e. loaded in the very high cycle fatigue domain (VHCF). Therefore, to design structures in the VHCF domain, a reliable methodology is necessary. One useful quantity to characterize plastic activity at the microscopic scale and fatigue damage evolution is the mechanical work supplied to a material. However, the estimation of this mechanical work in a metal during ultrasonic fatigue tests remains challenging. This paper aims to present an innovative methodology to quantify this. An experimental procedure was developed to estimate the mechanical work from stress and total strain evolution measurements during one loading cycle with a time accuracy of about 50 ns. This was achieved by conducting time-resolved X-ray diffraction coupled to strain gauge measurements at a synchrotron facility working in pulsed mode (single-bunch mode).

7.
J Cell Biol ; 222(12)2023 12 04.
Article En | MEDLINE | ID: mdl-37930352

Although mutations in the SCRIB gene lead to multiple morphological organ defects in vertebrates, the molecular pathway linking SCRIB to organ shape anomalies remains elusive. Here, we study the impact of SCRIB-targeted gene mutations during the formation of the gut epithelium in an organ-on-chip model. We show that SCRIB KO gut-like epithelia are flatter with reduced exposed surface area. Cell differentiation on filters further shows that SCRIB plays a critical role in the control of apical cell shape, as well as in the basoapical polarization of myosin light chain localization and activity. Finally, we show that SCRIB serves as a molecular scaffold for SHROOM2/4 and ROCK1 and identify an evolutionary conserved SHROOM binding site in the SCRIB carboxy-terminal that is required for SCRIB function in the control of apical cell shape. Our results demonstrate that SCRIB plays a key role in epithelial morphogenesis by controlling the epithelial apical contractility during cell differentiation.


Cell Differentiation , Epithelium , Membrane Proteins , Animals , Binding Sites , Biological Evolution , Cell Shape , Epithelium/growth & development , Microphysiological Systems , Membrane Proteins/physiology , Morphogenesis
8.
Nature ; 624(7990): 207-214, 2023 Dec.
Article En | MEDLINE | ID: mdl-37879362

Four endemic seasonal human coronaviruses causing common colds circulate worldwide: HKU1, 229E, NL63 and OC43 (ref. 1). After binding to cellular receptors, coronavirus spike proteins are primed for fusion by transmembrane serine protease 2 (TMPRSS2) or endosomal cathepsins2-9. NL63 uses angiotensin-converting enzyme 2 as a receptor10, whereas 229E uses human aminopeptidase-N11. HKU1 and OC43 spikes bind cells through 9-O-acetylated sialic acid, but their protein receptors remain unknown12. Here we show that TMPRSS2 is a functional receptor for HKU1. TMPRSS2 triggers HKU1 spike-mediated cell-cell fusion and pseudovirus infection. Catalytically inactive TMPRSS2 mutants do not cleave HKU1 spike but allow pseudovirus infection. Furthermore, TMPRSS2 binds with high affinity to the HKU1 receptor binding domain (Kd 334 and 137 nM for HKU1A and HKU1B genotypes) but not to SARS-CoV-2. Conserved amino acids in the HKU1 receptor binding domain are essential for binding to TMPRSS2 and pseudovirus infection. Newly designed anti-TMPRSS2 nanobodies potently inhibit HKU1 spike attachment to TMPRSS2, fusion and pseudovirus infection. The nanobodies also reduce infection of primary human bronchial cells by an authentic HKU1 virus. Our findings illustrate the various evolution strategies of coronaviruses, which use TMPRSS2 to either directly bind to target cells or prime their spike for membrane fusion and entry.


Betacoronavirus , Receptors, Virus , Serine Endopeptidases , Spike Glycoprotein, Coronavirus , Humans , Betacoronavirus/metabolism , Bronchi/cytology , Bronchi/virology , Common Cold/drug therapy , Common Cold/virology , Membrane Fusion , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/therapeutic use , Species Specificity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
9.
iScience ; 25(12): 105628, 2022 Dec 22.
Article En | MEDLINE | ID: mdl-36483015

Hearing depends on fast and sustained calcium-dependent synaptic vesicle fusion at the ribbon synapses of cochlear inner hair cells (IHCs). The implication of the canonical neuronal SNARE complex in this exocytotic process has so far remained controversial. We investigated the role of SNAP-25, a key component of this complex, in hearing, by generating and analyzing a conditional knockout mouse model allowing a targeted postnatal deletion of Snap-25 in IHCs. Mice subjected to IHC Snap-25 inactivation after hearing onset developed severe to profound deafness because of defective IHC exocytosis followed by ribbon degeneration and IHC loss. Viral transfer of Snap-25 in these mutant mice rescued their hearing function by restoring IHC exocytosis and preventing synapses and hair cells from degeneration. These results demonstrate that SNAP-25 is essential for normal hearing function, most likely by ensuring IHC exocytosis and ribbon synapse maintenance.

10.
Eur J Neurol ; 29(9): 2823-2831, 2022 09.
Article En | MEDLINE | ID: mdl-35699338

BACKGROUND AND PURPOSE: Zika virus (ZIKV) infection has been associated with Guillain-Barré syndrome (GBS). However, little is known about the consequence of ZIKV infection on olfaction in humans. METHODS: Immediately before the COVID-19 outbreak, we prospectively investigated the olfactory capacities of 19 patients with ZIKV-associated GBS from the French West Indies and compared them to nine controls from the same population, with GBS of similar severity but independent of ZIKV infection. To provide further evidence that ZIKV infection induces smell alteration, we investigated the consequences of ZIKV infection on olfactory abilities using a mouse model. RESULTS: Patients with GBS-ZIKA+ had poorer olfactory function than GBS-non-ZIKA, even 1-2 years after the acute phase. The proportion of patients with hyposmia was significantly higher in the GBS-ZIKA+ than in the GBS-non-ZIKA group (68.4% vs. 22.2%, p = 0.042). These deficits were characterized by lower threshold and identification scores and were independent from GBS severity. Additionally, ZIKV infection was found to impair olfaction in immunodeficient mice infected with ZIKV. High viral load was observed in their olfactory system and downstream brain structures. ZIKV promoted both cellular damage in the olfactory neuroepithelium and protracted inflammation of the olfactory bulb, likely accounting for smell alteration. CONCLUSIONS: Patients with ZIKV-related GBS had poorer long-term olfactory function than patients with GBS-non-ZIKA, and ZIKV-infected mice are hyposmic. These observations suggest that ZIKV belongs on the list of viruses affecting the olfactory system. Clinical evaluation of the olfactory system should be considered for ZIKV-infected patients.


COVID-19 , Guillain-Barre Syndrome , Zika Virus Infection , Zika Virus , Animals , Humans , Mice , Smell , Zika Virus Infection/complications , Zika Virus Infection/epidemiology
11.
Front Neurosci ; 15: 750596, 2021.
Article En | MEDLINE | ID: mdl-34790090

Introduction: Vestibular sensory hair cells are precisely orientated according to planar cell polarity (PCP) and are key to enable mechanic-electrical transduction and normal vestibular function. PCP is found on different scales in the vestibular organs, ranging from correct hair bundle orientation, coordination of hair cell orientation with neighboring hair cells, and orientation around the striola in otolithic organs. Celsr1 is a PCP protein and a Celsr1 KO mouse model showed hair cell disorganization in all vestibular organs, especially in the canalar ampullae. The objective of this work was to assess to what extent the different vestibulo-ocular reflexes were impaired in Celsr1 KO mice. Methods: Vestibular function was analyzed using non-invasive video-oculography. Semicircular canal function was assessed during sinusoidal rotation and during angular velocity steps. Otolithic function (mainly utricular) was assessed during off-vertical axis rotation (OVAR) and during static and dynamic head tilts. Results: The vestibulo-ocular reflex of 10 Celsr1 KO and 10 control littermates was analyzed. All KO mice presented with spontaneous nystagmus or gaze instability in dark. Canalar function was reduced almost by half in KO mice. Compared to control mice, KO mice had reduced angular VOR gain in all tested frequencies (0.2-1.5 Hz), and abnormal phase at 0.2 and 0.5 Hz. Concerning horizontal steps, KO mice had reduced responses. Otolithic function was reduced by about a third in KO mice. Static ocular-counter roll gain and OVAR bias were both significantly reduced. These results demonstrate that canal- and otolith-dependent vestibulo-ocular reflexes are impaired in KO mice. Conclusion: The major ampullar disorganization led to an important reduction but not to a complete loss of angular coding capacities. Mildly disorganized otolithic hair cells were associated with a significant loss of otolith-dependent function. These results suggest that the highly organized polarization of otolithic hair cells is a critical factor for the accurate encoding of the head movement and that the loss of a small fraction of the otolithic hair cells in pathological conditions is likely to have major functional consequences. Altogether, these results shed light on how partial loss of vestibular information encoding, as often encountered in pathological situations, translates into functional deficits.

12.
Nat Commun ; 12(1): 4354, 2021 07 16.
Article En | MEDLINE | ID: mdl-34272374

Understanding how SARS-CoV-2 spreads within the respiratory tract is important to define the parameters controlling the severity of COVID-19. Here we examine the functional and structural consequences of SARS-CoV-2 infection in a reconstructed human bronchial epithelium model. SARS-CoV-2 replication causes a transient decrease in epithelial barrier function and disruption of tight junctions, though viral particle crossing remains limited. Rather, SARS-CoV-2 replication leads to a rapid loss of the ciliary layer, characterized at the ultrastructural level by axoneme loss and misorientation of remaining basal bodies. Downregulation of the master regulator of ciliogenesis Foxj1 occurs prior to extensive cilia loss, implicating this transcription factor in the dedifferentiation of ciliated cells. Motile cilia function is compromised by SARS-CoV-2 infection, as measured in a mucociliary clearance assay. Epithelial defense mechanisms, including basal cell mobilization and interferon-lambda induction, ramp up only after the initiation of cilia damage. Analysis of SARS-CoV-2 infection in Syrian hamsters further demonstrates the loss of motile cilia in vivo. This study identifies cilia damage as a pathogenic mechanism that could facilitate SARS-CoV-2 spread to the deeper lung parenchyma.


COVID-19/pathology , Cilia/ultrastructure , Mucociliary Clearance/physiology , SARS-CoV-2 , Animals , Axoneme , Basal Bodies , Cilia/metabolism , Cilia/pathology , Cricetinae , Cytokines , Epithelial Cells/pathology , Forkhead Transcription Factors/metabolism , Humans , Lung/pathology , Male , Mesocricetus , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Virus Replication
13.
Sci Transl Med ; 13(596)2021 06 02.
Article En | MEDLINE | ID: mdl-33941622

Whereas recent investigations have revealed viral, inflammatory, and vascular factors involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lung pathogenesis, the pathophysiology of neurological disorders in coronavirus disease 2019 (COVID-19) remains poorly understood. Olfactory and taste dysfunction are common in COVID-19, especially in mildly symptomatic patients. Here, we conducted a virologic, molecular, and cellular study of the olfactory neuroepithelium of seven patients with COVID-19 presenting with acute loss of smell. We report evidence that the olfactory neuroepithelium is a major site of SARS-CoV2 infection with multiple cell types, including olfactory sensory neurons, support cells, and immune cells, becoming infected. SARS-CoV-2 replication in the olfactory neuroepithelium was associated with local inflammation. Furthermore, we showed that SARS-CoV-2 induced acute anosmia and ageusia in golden Syrian hamsters, lasting as long as the virus remained in the olfactory epithelium and the olfactory bulb. Last, olfactory mucosa sampling from patients showing long-term persistence of COVID-19-associated anosmia revealed the presence of virus transcripts and of SARS-CoV-2-infected cells, together with protracted inflammation. SARS-CoV-2 persistence and associated inflammation in the olfactory neuroepithelium may account for prolonged or relapsing symptoms of COVID-19, such as loss of smell, which should be considered for optimal medical management of this disease.


Anosmia/virology , Brain/virology , COVID-19 , Olfactory Mucosa/pathology , Animals , COVID-19/pathology , Cricetinae , Humans , Inflammation , Olfactory Mucosa/virology , RNA, Viral , SARS-CoV-2
14.
Med Sci (Paris) ; 37(2): 167-177, 2021 Feb.
Article Fr | MEDLINE | ID: mdl-33591260

Nematostella has fascinating features such as whole-body regeneration, the absence of signs of aging and importantly, the absence of age-related diseases. Easy to culture and spawn, this little sea anemone in spite of its "simple" aspect, displays interesting morphological characteristics similar to vertebrates and an unexpected similarity in gene content/genome organization. Importantly, the scientific community working on Nematostella is developing a variety of functional genomics tools that enable scientists to use this anemone in the field of regenerative medicine, longevity and mecano-sensory diseases. As a complementary research model to vertebrates, this marine invertebrate is emerging and promising to dig deeper into those fields of research in an integrative manner (entire organism) and provides new opportunities for scientists to lift specific barriers that can be encountered with other commonly used animal models.


TITLE: L'anémone de mer Nematostella vectensis - Un modèle émergent pour la recherche biomédicale : mécano-sensibilité, régénération et longévité. ABSTRACT: Nematostella, petite anémone de mer, possède de fascinantes propriétés, telles que la régénération du corps entier, l'absence de signes de vieillissement et d'affections liées à l'âge comme, par exemple, le développement de cancers. Elle se cultive aisément et se reproduit en laboratoire. Malgré son aspect « simple ¼, cet invertébré marin de l'embranchement des cnidaires partage avec les vertébrés des caractéristiques non seulement morphologiques, mais également génomiques. La communauté scientifique développe aujourd'hui une variété d'outils de génomique fonctionnelle permettant l'utilisation de cet animal de façon intégrative dans le domaine de la médecine régénérative, de la longévité et des maladies mécano-sensorielles. Son étude se présente comme particulièrement prometteuse pour faire progresser la connaissance dans ces différents domaines, offrant des possibilités expérimentales qui font défaut dans les modèles animaux classiques.


Biomedical Research/trends , Longevity/physiology , Mechanotransduction, Cellular/physiology , Regeneration/physiology , Sea Anemones/physiology , Animals , Biomedical Research/methods , Genomics/methods , Genomics/trends , Models, Animal , Regenerative Medicine/methods , Regenerative Medicine/trends
15.
Proc Natl Acad Sci U S A ; 117(49): 31278-31289, 2020 12 08.
Article En | MEDLINE | ID: mdl-33229591

Presbycusis, or age-related hearing loss (ARHL), is a major public health issue. About half the phenotypic variance has been attributed to genetic factors. Here, we assessed the contribution to presbycusis of ultrarare pathogenic variants, considered indicative of Mendelian forms. We focused on severe presbycusis without environmental or comorbidity risk factors and studied multiplex family age-related hearing loss (mARHL) and simplex/sporadic age-related hearing loss (sARHL) cases and controls with normal hearing by whole-exome sequencing. Ultrarare variants (allele frequency [AF] < 0.0001) of 35 genes responsible for autosomal dominant early-onset forms of deafness, predicted to be pathogenic, were detected in 25.7% of mARHL and 22.7% of sARHL cases vs. 7.5% of controls (P = 0.001); half were previously unknown (AF < 0.000002). MYO6, MYO7A, PTPRQ, and TECTA variants were present in 8.9% of ARHL cases but less than 1% of controls. Evidence for a causal role of variants in presbycusis was provided by pathogenicity prediction programs, documented haploinsufficiency, three-dimensional structure/function analyses, cell biology experiments, and reported early effects. We also established Tmc1N321I/+ mice, carrying the TMC1:p.(Asn327Ile) variant detected in an mARHL case, as a mouse model for a monogenic form of presbycusis. Deafness gene variants can thus result in a continuum of auditory phenotypes. Our findings demonstrate that the genetics of presbycusis is shaped by not only well-studied polygenic risk factors of small effect size revealed by common variants but also, ultrarare variants likely resulting in monogenic forms, thereby paving the way for treatment with emerging inner ear gene therapy.


Deafness/genetics , Genes, Dominant , Mutation/genetics , Presbycusis/genetics , Age Factors , Age of Onset , Animals , Case-Control Studies , Cohort Studies , Heterozygote , Humans , Membrane Proteins/genetics , Mice , MicroRNAs/genetics , Mitochondria/genetics , Exome Sequencing
16.
Sci Rep ; 10(1): 16430, 2020 10 02.
Article En | MEDLINE | ID: mdl-33009420

The hair bundle of cochlear hair cells is the site of auditory mechanoelectrical transduction. It is formed by three rows of stiff microvilli-like protrusions of graduated heights, the short, middle-sized, and tall stereocilia. In developing and mature sensory hair cells, stereocilia are connected to each other by various types of fibrous links. Two unconventional cadherins, protocadherin-15 (PCDH15) and cadherin-23 (CDH23), form the tip-links, whose tension gates the hair cell mechanoelectrical transduction channels. These proteins also form transient lateral links connecting neighboring stereocilia during hair bundle morphogenesis. The proteins involved in anchoring these diverse links to the stereocilia dense actin cytoskeleton remain largely unknown. We show that the long isoform of whirlin (L-whirlin), a PDZ domain-containing submembrane scaffold protein, is present at the tips of the tall stereocilia in mature hair cells, together with PCDH15 isoforms CD1 and CD2; L-whirlin localization to the ankle-link region in developing hair bundles moreover depends on the presence of PCDH15-CD1 also localizing there. We further demonstrate that L-whirlin binds to PCDH15 and CDH23 with moderate-to-high affinities in vitro. From these results, we suggest that L-whirlin is part of the molecular complexes bridging PCDH15-, and possibly CDH23-containing lateral links to the cytoskeleton in immature and mature stereocilia.


Cadherins/metabolism , Cochlea/metabolism , Hair Cells, Auditory/metabolism , Membrane Proteins/metabolism , Protein Precursors/metabolism , Animals , Cadherin Related Proteins , Cell Differentiation/physiology , Female , Male , Mechanotransduction, Cellular/physiology , Mice , Mice, Inbred C57BL , Microscopy, Electron, Scanning/methods , Protein Isoforms/metabolism , Stereocilia/metabolism
17.
Caspian J Intern Med ; 11(Suppl 1): 566-568, 2020.
Article En | MEDLINE | ID: mdl-33425277

BACKGROUND: The clinical presentation of SARS-CoV-2 infection was initially dominated by respiratory symptoms. However, the clinical spectrum is wide and neuropsychiatric syndromes are also a source of medical concern. Our aims are to present an atypical clinical presentation of SARS-CoV-2 infection characterized by auditory hallucinations and unusual behavior and to emphasize the diversity of clinical manifestations of SARS-CoV-2 infection. CASE PRESENTATION: A 33-year-old woman was admitted to the emergency department (ED) with a one-day history of auditory hallucinations, unusual behavior, changes in her sleeping habits and incoherent speech. No other symptoms were reported. Blood examinations confirmed high elevated white cell count and C-reactive protein. The head CT scan was normal but the chest scan showed right ground-glass opacities in the lower zones. The oropharyngeal swab was positive for SARS-CoV-2. Based on these results, the diagnosis of SARS-CoV-2 infection was retained. The patient received no specific treatment for SARS-CoV-2 infection and only needed oxygen therapy support for 7 days. The additional dose of Olanzapine 10 mg daily was initially prescribed but the patient was back to her usual self on day 14 of hospital admission leading to its discontinuation. This clinical course was consistent with a first episode of psychosis triggered by SARS-CoV-2 infection. CONCLUSION: Neuroinflammation owing to SARS-CoV-2 infection could be responsible for a wide and unknown spectrum of neuropsychiatric manifestations. During this pandemic, special attention should be given to patients with no previous history of psychiatric disorders presenting to ED with neuropsychiatric syndromes of unknown etiology.

18.
Proc Natl Acad Sci U S A ; 116(51): 25948-25957, 2019 12 17.
Article En | MEDLINE | ID: mdl-31776257

The function of outer hair cells (OHCs), the mechanical actuators of the cochlea, involves the anchoring of their tallest stereocilia in the tectorial membrane (TM), an acellular structure overlying the sensory epithelium. Otogelin and otogelin-like are TM proteins related to secreted epithelial mucins. Defects in either cause the DFNB18B and DFNB84B genetic forms of deafness, respectively, both characterized by congenital mild-to-moderate hearing impairment. We show here that mutant mice lacking otogelin or otogelin-like have a marked OHC dysfunction, with almost no acoustic distortion products despite the persistence of some mechanoelectrical transduction. In both mutants, these cells lack the horizontal top connectors, which are fibrous links joining adjacent stereocilia, and the TM-attachment crowns coupling the tallest stereocilia to the TM. These defects are consistent with the previously unrecognized presence of otogelin and otogelin-like in the OHC hair bundle. The defective hair bundle cohesiveness and the absence of stereociliary imprints in the TM observed in these mice have also been observed in mutant mice lacking stereocilin, a model of the DFNB16 genetic form of deafness, also characterized by congenital mild-to-moderate hearing impairment. We show that the localizations of stereocilin, otogelin, and otogelin-like in the hair bundle are interdependent, indicating that these proteins interact to form the horizontal top connectors and the TM-attachment crowns. We therefore suggest that these 2 OHC-specific structures have shared mechanical properties mediating reaction forces to sound-induced shearing motion and contributing to the coordinated displacement of stereocilia.


Hair Cells, Auditory, Outer/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Stereocilia/metabolism , Tectorial Membrane/metabolism , Animals , Cochlea/cytology , Deafness/congenital , Deafness/genetics , Deafness/metabolism , Genetic Predisposition to Disease , Hair Cells, Auditory, Outer/cytology , Hair Cells, Vestibular/metabolism , Hearing Loss, Sensorineural/congenital , Hearing Loss, Sensorineural/genetics , Mice , Mice, Knockout , Tectorial Membrane/cytology
19.
Mol Plant Pathol ; 20(8): 1051-1066, 2019 08.
Article En | MEDLINE | ID: mdl-31115167

Many recessive resistances against potyviruses are mediated by eukaryotic translation initiation factor 4E (eIF4E). In tobacco, the va resistance gene commonly used to control Potato virus Y (PVY) corresponds to a large deletion affecting the eIF4E-1 gene on chromosome 21. Here, we compared the resistance durability conferred by various types of mutations affecting eIF4E-1 (deletions of various sizes, frameshift or nonsense mutations). The 'large deletion' genotypes displayed the broadest and most durable resistance, whereas frameshift and nonsense mutants displayed a less durable resistance, with rapid and frequent apparition of resistance-breaking variants. In addition, genetic and transcriptomic analyses revealed that resistance durability is strongly impacted by a complex genetic locus on chromosome 14, which contains three other eIF4E genes. One of these, eIF4E-3, is rearranged as a hybrid gene between eIF4E-2 and eIF4E-3 (eIF4E-2-3 ) in the genotypes showing the most durable resistance, while eIF4E-2 is differentially expressed between the tested varieties. RNA-seq and quantitative reverse transcriptase-polymerase chain reaction experiments demonstrated that eIF4E-2 expression level is positively correlated with resistance durability. These results suggest that besides the nature of the mutation affecting eIF4E-1, three factors linked with a complex locus may potentially impact va durability: loss of an integral eIF4E-3, presence of eIF4E-2-3 and overexpression of eIF4E-2. This latter gene might act as a decoy in a non-productive virus-plant interaction, limiting the ability of PVY to evolve towards resistance breaking. Taken together, these results show that va resistance durability can in large part be explained by complex redundancy effects in the eIF4E gene family.


Disease Resistance , Eukaryotic Initiation Factor-4E/genetics , Genes, Plant , Genetic Loci , Nicotiana/immunology , Nicotiana/virology , Plant Diseases/immunology , Plant Diseases/virology , Potyvirus/physiology , Amino Acid Substitution/genetics , Chromosomes, Plant/genetics , Ecotype , Gene Dosage , Gene Expression Regulation, Plant , Genotype , Models, Biological , Mutation/genetics , Phenotype , Phylogeny , Plant Diseases/genetics , Sequence Deletion , Nicotiana/genetics
20.
Elife ; 82019 04 01.
Article En | MEDLINE | ID: mdl-30932811

Sound analysis by the cochlea relies on frequency tuning of mechanosensory hair cells along a tonotopic axis. To clarify the underlying biophysical mechanism, we have investigated the micromechanical properties of the hair cell's mechanoreceptive hair bundle within the apical half of the rat cochlea. We studied both inner and outer hair cells, which send nervous signals to the brain and amplify cochlear vibrations, respectively. We find that tonotopy is associated with gradients of stiffness and resting mechanical tension, with steeper gradients for outer hair cells, emphasizing the division of labor between the two hair-cell types. We demonstrate that tension in the tip links that convey force to the mechano-electrical transduction channels increases at reduced Ca2+. Finally, we reveal gradients in stiffness and tension at the level of a single tip link. We conclude that mechanical gradients of the tip-link complex may help specify the characteristic frequency of the hair cell.


Biomechanical Phenomena , Cochlea/cytology , Mechanoreceptors/physiology , Animals , Mechanotransduction, Cellular , Rats, Sprague-Dawley , Stress, Mechanical
...