Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
Add more filters










Publication year range
1.
EFSA J ; 22(5): e8769, 2024 May.
Article in English | MEDLINE | ID: mdl-38799480

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of amines, di-C14-C18-alkyl, oxidised, renamed by the Panel as amines, di-C14-C20-alkyl, oxidised, from hydrogenated vegetable oil. The substance amines, bis(hydrogenated tallow alkyl) oxidised, consisting of the same components, but originating from tallow, is currently authorised as FCM substance No 768. The vegetable-sourced substance is intended to be used at up to 0.1% w/w as antioxidant and/or stabiliser in the manufacture of polyolefin food contact materials (FCM) and articles intended for contact with dry, aqueous and acidic foods. The substance is a mixture consisting of linear N,N-dialkyl hydroxylamines and their corresponding amine, nitrone and oxime derivatives, as well as further components: tert-N-oxides, secondary amides and carboxylic acids. Specific migration was tested from polyethylene samples in 10% ethanol and 3% acetic acid for 2 h at 100°C followed by 10 days at 60°C. None of the non-authorised components were detected to migrate at detection limits (LoD) in the range 0.003-0.029 mg/kg. The LoD of authorised carboxylic acids was 0.35 mg/kg. The Panel reassessed the genotoxicity studies carried out on FCM No 768 and evaluated two new bacterial reverse mutation tests on the nitrone and oxime derivatives as well as new (qualitative/quantitative) structure-activity relationship (Q)SAR analyses on other components. The Panel concluded that the substance did not raise a concern for genotoxicity. The Panel concluded that the substance is not of safety concern for the consumers if it is used as an additive at 0.1% w/w in the manufacture of polyolefin FCM intended to be in contact with foods simulated by food simulants A, B, C and E, except for infant formula and human milk, for storage above 6 months at room temperature and below, including hot-fill conditions and heating up to 100°C for 2 h.

2.
EFSA J ; 22(4): e8704, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38601862

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids assessed the safety of the recycling process Martogg Group (EU register number RECYC321), which uses the EREMA Advanced technology. The input material is ■■■■■ washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in continuous reactors ■■■■■ before being extruded. Having examined the challenge test provided, the Panel concluded that the continuous decontamination steps (Steps 2 and 3), for which a challenge test was provided, are critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migration of 0.1 µg/kg food derived from the exposure scenario for infants when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

3.
EFSA J ; 22(4): e8705, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634011

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids assessed the safety of calcium tert-butylphosphonate, which is intended to be used as a nucleating agent up to 0.15% w/w for the manufacture of polyolefin food contact materials (FCM) and articles for single and repeated use, in contact with all types of food, including infant formula and human milk. Specific migration was tested using polyethylene samples in 10% ethanol, 3% acetic acid and 95% ethanol for 2 h at 100°C, followed by 238 h at 40°C. Results for all three simulants were near or below the limit of detection of 10 µg/kg. As the solubility of the substance is far above the reported migration and above 60 mg/kg food, no assessment of the particle fraction was needed, and the conventional risk assessment was followed. The substance did not induce gene mutations in bacterial cells and structural chromosomal aberrations in mammalian cells, thus, did not raise concern for genotoxicity. The Panel considered that the use of the substance did not give rise to safety concern related to neurotoxicity for the general population, but this conclusion could not be applied to infants below 16 weeks of age, due to their specific sensitivity and the absence of dedicated data. The Panel concluded that calcium tert-butylphosphonate does not raise a safety concern for the consumer if it is used as a nucleating agent up to 0.15% w/w in the manufacture of polyolefin FCM that are intended to be in contact with all types of food for storage above 6 months at room temperature and below, including temperatures up to 100°C for maximum 2 h and up to 130°C for short durations. The Panel could not evaluate the safety of use to manufacture FCM for contact with infant formula and human milk.

4.
EFSA J ; 22(4): e8694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576538

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the substance 'phosphorous acid, triphenyl ester, polymer with 1,4-cyclohexanedimethanol and polypropylene glycol, C10-16 alkyl esters', when used as an additive in all types of polyolefins. The substance is a polymer containing ≤ 13% w/w of a low molecular weight fraction (LMWF, < 1000 Da). A polyethylene sample with 0.15% w/w of the substance was used in a comprehensive set of migration tests with food simulants. The specific migration was up to 0.014 and 0.023 mg/kg in 4% acetic acid and 10% ethanol, respectively. Migration into olive oil was estimated by the Panel to be up to 5.3 mg/kg under worst-case conditions of use. The migrating LMWF species were comprehensively identified. Those without phosphorous were either without alerts for genotoxicity or listed in Regulation (EU) 10/2011 with worst-case migrations well below their respective specific migration limits. Toxicological studies were performed using phosphite and phosphate versions of the substance enriched in its LMWF. The substance does not raise a concern for genotoxicity. From a repeated dose 90-day oral toxicity study in rats with a 50:50 phosphite:phosphate blend, the Panel identified a NOAEL of 250 mg/kg bw per day for each component of the blend. No delayed neurotoxicity in hens was observed. The CEP Panel concluded that the substance does not raise a safety concern for the consumer if its LMWF is not higher than 13% w/w, if it is used at up to 0.15% w/w in polyolefin materials and articles intended for contact with all food types, except for infant formula and human milk, for long-term storage at room temperature and below, after hot-fill and/or heating up to 100°C for up to 2 h, and if its migration does not exceed 5 mg/kg food.

5.
EFSA J ; 22(4): e8703, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38660016

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of mixtures of 1,9-nonanediamine (NMDA) and 2-methyl-1,8-octanediamine (MODA) when used to produce polyamide food contact materials for contact with all food types for long-term storage at room temperature and below, including heating up to 121°C for up to 2 h. The polyamide material is also intended to be used for repeated use up to 121°C with short contact (up to 30 min). The polymer typically contains ■■■■■ of a low molecular weight fraction (LMWF, < 1000 Da). The specific migration was measured with polyamide samples in a set of migration tests with 3% acetic acid and 10% ethanol. NMDA and MODA were not detected at ■■■■■, respectively. The specific migration of the LMWF consisting of NMDA/MODA-related species was up to ■■■■■. The overall migration in olive oil was below the detection limit (3 mg/dm2). The most abundant migrating LMWF oligomers were identified. Toxicological studies were performed with NMDA, MODA and with polyamide formulations enriched in the LMWF. The results of genotoxicity assays did not raise a concern. From a repeated-dose oral 90-day toxicity study in rats, the Panel identified a no observed adverse effect level (NOAEL) of 1000 mg/kg body weight per day for the migrating LMWF. The CEP Panel concluded that NMDA/MODA mixtures do not raise a safety concern for the consumer when used as comonomer with terephthalic acid to manufacture polyamide articles intended for contact with all food types, except for infant formula and human milk, if the migration of NMDA and MODA does not exceed 0.05 mg/kg food (as a sum of the two substances) and if the migration of the LMWF consisting of NMDA/MODA-related species does not exceed 5 mg/kg food.

6.
EFSA J ; 22(3): e8609, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435093

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Lietpak (EU register number RECYC319), which uses the EREMA MPR technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated ■■■■■ under vacuum (step 2). Having examined the challenge test provided, the Panel concluded that this step 2, for which the challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migration of 0.15 µg/kg food, derived from the exposure scenario for toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not considered to be of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, except drinking water, for long-term storage at room temperature or below, with or without hot fill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

7.
EFSA J ; 22(3): e8608, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435091

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process CeltiPak (EU register number RECYC318), which uses the Kreyenborg IR Clean+ technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, for example, bottles, with no more than 5% PET from non-food consumer applications. The flakes are heated in a continuous IR dryer (step 2) before being processed in a finisher reactor (step 3). Having examined the challenge test provided, the Panel concluded that step 2 and step 3 are critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of these critical steps are temperature, air/PET ratio and residence time. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.10 and 0.15 µg/kg food, derived from the exposure scenario for infants and toddlers, respectively, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not considered to be of safety concern, when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

8.
EFSA J ; 22(2): e8635, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38405108

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Shinkong (EU register number RECYC320), which uses the EREMA Basic technology. The input material is ■■■■■ washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a continuous reactor ■■■■■ before being extruded. Having examined the challenge test provided, the Panel concluded that the continuous decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migration of 0.1 µg/kg food derived from the exposure scenario for infants, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

9.
EFSA J ; 22(2): e8601, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38405109

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Reliance Industries (EU register number RECYC315), which uses the ProTec technology. The input material consists of washed and dried poly(ethylene terephthalate) (PET) flakes, mainly originating from collected post-consumer PET containers, e.g. bottles, with no more than 5% PET from non-food consumer applications. The flakes are extruded into pellets (step 1), crystallised (step 2) and treated in a solid-state polycondensation (SSP) reactor (step 3). Having examined the challenge test provided, the Panel concluded that the extrusion and the decontamination in the ■■■■■ SSP reactor (steps 1 and 3) are critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of these critical steps are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not considered to be of safety concern, when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

10.
EFSA J ; 22(2): e8610, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38419964

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process ENPLATER (EU register number RECYC316), which uses the Kreyenborg IR Clean+ technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, e.g. bottles, with no more than 5% PET from non-food consumer applications. The flakes are heated in a continuous IR dryer (step 2) before being processed in a finisher reactor (step 3). Having examined the challenge test provided, the Panel concluded that step 2 and step 3 are critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of these critical steps are temperature, air/PET ratio and residence time. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.10 and 0.15 µg/kg food, derived from the exposure scenario for infants and toddlers, respectively, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not considered to be of safety concern, when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

11.
EFSA J ; 22(2): e8611, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38419966

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process GTX Hanex (EU register number RECYC317), which uses the Kreyenborg IR Clean+ technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, e.g. bottles, with no more than 5% PET from non-food consumer applications. The flakes are heated in a continuous IR dryer (step 2) before being processed in a finisher reactor (step 3). Having examined the challenge test provided, the Panel concluded that step 2 and step 3 are critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of these critical steps are temperature, air/PET ratio and residence time. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.10 and 0.15 µg/kg food, derived from the exposure scenario for infants and toddlers, respectively, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not considered to be of safety concern, when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

12.
EFSA J ; 22(1): e8519, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38213418

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Novatex (EU register number RECYC313), which uses the EREMA Basic technology. The input material is ■■■■■ washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a continuous reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the continuous decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migration of 0.1 µg/kg food derived from the exposure scenario for infants when such recycled PET is used at up to 95% in mixtures with virgin PET, and of 0.15 µg/kg food, derived from the exposure scenario for toddlers when used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 95% in mixtures with virgin PET for manufacturing of materials and articles for contact with all types of foodstuffs, including drinking water bottles, and at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs except drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

13.
EFSA J ; 22(1): e8518, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38213416

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Reciclar (EU register number RECYC314), which uses the EREMA Basic technology. The input material is ■■■■■ washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a continuous reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the continuous decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migration of 0.1 µg/kg food, derived from the exposure scenario for infants, when such recycled PET is used at up to 95% in mixtures with virgin PET, and of 0.15 µg/kg food, derived from the exposure scenario for toddlers, when used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 95% in mixtures with virgin PET for manufacturing of materials and articles for contact with all types of foodstuffs, including drinking water bottles, and at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, except drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

14.
EFSA J ; 21(11): e08407, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027433

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Rekis (EU register number RECYC311), which uses the VACUNITE (EREMA basic and Polymetrix SSP V-leaN) technology. The input is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are pre-decontaminated in the ■■■■■ at ■■■■■ under ■■■■■ (step 2) before being extruded, pelletised and ■■■■■ (step 3). The crystallised pellets are then ■■■■■ (step 4) and submitted to solid-state polycondensation (SSP) (step 5) at ■■■■■, under ■■■■■ and ■■■■■. Having examined the challenge tests provided, the Panel concluded that step 2 as well as steps 4 and 5 are critical for determining the decontamination efficiency of the process. The operating parameters to control the performance are temperature, pressure and residence time for steps 2, 4 and 5 as well as the gas velocity for steps 4 and 5. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern, when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

15.
EFSA J ; 21(11): e08404, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027438

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Intco Malaysia (EU register number RECYC309), which uses the VACUNITE (EREMA basic and Polymetrix SSP V-leaN) technology. The input consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are pre-decontaminated in the ■■■■■ at ■■■■■ under ■■■■■ (step 2), then extruded and pelletised. The ■■■■■ pellets are then ■■■■■ and submitted to solid-state polycondensation (SSP) at ■■■■■ under ■■■■■ and ■■■■■. Having examined the challenge tests provided, the Panel concluded that the step 2 (flake reactor) and steps 4 and 5 (preheating and SSP) are critical for determining the decontamination efficiency of the process. The operating parameters to control the performance are temperature, pressure and residence time for steps 2, 4 and 5 as well as the ■■■■■ for steps 4 and 5. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern, when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

16.
EFSA J ; 21(11): e08403, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027446

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process INCOM RESOURCES RECOVERY (TIANJIN) (EU register number RECYC312), which uses the Buhler technology. The input material consists of hot washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, e.g. bottles, including no more than 5% PET from non-food consumer applications. Washed and dried flakes are extruded into pellets, which are dried and crystallised in a reactor and then preheated and further treated in a solid-state polymerisation (SSP) reactor. The recycled pellets are intended to be used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. The Panel concluded that the information submitted to EFSA is inadequate to demonstrate that this recycling process is able to reduce potential unknown contamination of the input PET flakes to a concentration that does not pose a risk to human health.

17.
EFSA J ; 21(11): e08405, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027453

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Guangxi Wuzhou Guolong Recyclable (EU register number RECYC310), which uses the VACUNITE (EREMA basic and Polymetrix SSP V-leaN) technology. The input consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes, mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are pre-decontaminated in the ■■■■■ at ■■■■■ under ■■■■■ (step 2) before being extruded, pelletised and crystallised (step 3). The ■■■■■ pellets are then ■■■■■ (step 4) and submitted to solid-state polycondensation (SSP) (step 5) at high temperature under ■■■■■ and ■■■■■. Having examined the challenge tests provided, the Panel concluded that step 2 as well as steps 4 and 5 are critical for determining the decontamination efficiency of the process. The operating parameters to control the performance are temperature, pressure and residence time for steps 2, 4 and 5 as well as the ■■■■■ for steps 4 and 5. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern, when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

18.
EFSA J ; 21(10): e08263, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37799761

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Umincorp (EU register number RECYC302), which uses the NGR technology. The input consists of washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step ■■■■■ (step 4). In step 5, the melt is cooled down and granulated. Having examined the challenge test provided, the Panel concluded that the melt-state polycondensation (step 4) is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance are the pressure, the temperature, the residence time (depending on the mass and throughput of the melt) and the characteristics of the reactor. It was demonstrated by the challenge test that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

19.
EFSA J ; 21(10): e08265, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37829002

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Arcoplastica (EU register number RECYC308), which uses the Bandera PURe15 technology. The input consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are ■■■■■. Having examined the challenge test provided, the Panel concluded that the ■■■■■ are critical for the decontamination efficiency. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens, and such uses are not covered by this evaluation.

20.
EFSA J ; 21(10): e08269, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37818239

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Poly Recycling (EU register number RECYC307), which uses the Vacurema Prime technology. The input is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are heated in a batch reactor (Step 2) under vacuum and then treated at higher temperature in a continuous reactor (Step 3) under vacuum before being extruded into pellets. Having examined the challenge test provided, the Panel concluded that Steps 2 and 3 are critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of these steps are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, soft drinks, juices, tea, milk, oil, alcoholic beverages and other food products, for long-term storage at room temperature or below, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

SELECTION OF CITATIONS
SEARCH DETAIL
...