Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Br J Dermatol ; 188(5): 636-648, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36691791

ABSTRACT

BACKGROUND: Neutrophils have been shown to contribute to the pathophysiology of hidradenitis suppurativa (HS), a chronic, painful and debilitating inflammatory skin disease, yet their exact role remains to be fully defined. Granulocyte colony-stimulating factor (G-CSF), a major regulator of neutrophil development and survival, can be blocked by the novel, fully human anti-G-CSF receptor (G-CSFR) monoclonal antibody CSL324. OBJECTIVES: We investigated the activation and migration of neutrophils in HS and the impact of blocking G-CSFR with CSL324. METHODS: Biopsy and peripheral blood samples were taken from participants of two studies: 2018.206, a noninterventional research study of systemic and dermal neutrophils and inflammatory markers in patients with neutrophilic skin diseases, and CSL324_1001 (ACTRN12616000846426), a single-dose ascending and repeated dose, randomized, double-blind, placebo-controlled study to assess the safety, pharmacokinetics and pharmacodynamics of CSL324 in healthy adult subjects. Ex vivo experiments were performed, including neutrophil enumeration and immunophenotyping, migration, receptor occupancy and transcriptome analysis. RESULTS: The number of cells positive for the neutrophil markers myeloperoxidase (MPO) and neutrophil elastase (NE) was significantly higher in HS lesions compared with biopsies from healthy donors (HDs) (P < 0.0001 and P = 0.0223, respectively). In peripheral blood samples, mean neutrophil counts were significantly higher in patients with HS than in HDs (2.98 vs. 1.60 × 109 L-1, respectively; P = 8.8 × 10-4). Neutrophil migration pathways in peripheral blood were increased in patients with HS and their neutrophils demonstrated an increased migration phenotype, with higher mean CXCR1 on the surface of neutrophils in patients with HS (24453.20 vs. 20798.47 for HD; P = 0.03). G-CSF was a key driver of the transcriptomic changes in the peripheral blood of patients with HS and was elevated in serum from patients with HS compared with HDs (mean 6.61 vs. 3.84 pg mL-1, respectively; P = 0.013). Administration of CSL324 inhibited G-CSF-induced transcriptional changes in HDs, similar to those observed in the HS cohort, as highlighted by expression changes in genes related to neutrophil migratory capacity. CONCLUSIONS: Data suggest that neutrophils contribute to HS pathophysiology and that neutrophils are increased in lesions due to an increase in G-CSF-driven migration. CSL324 counteracted G-CSF-induced transcriptomic changes and blocked neutrophil migration by reducing cell-surface levels of chemokine receptors.


Subject(s)
Hidradenitis Suppurativa , Receptors, Granulocyte Colony-Stimulating Factor , Adult , Humans , Receptors, Granulocyte Colony-Stimulating Factor/metabolism , Neutrophils , Hidradenitis Suppurativa/drug therapy , Hidradenitis Suppurativa/metabolism , Receptors, Colony-Stimulating Factor/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology
2.
BMJ Open ; 11(9): e045557, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475144

ABSTRACT

OBJECTIVE: The COVID-19 pandemic has precipitated widespread shortages of filtering facepiece respirators (FFRs) and the creation and sharing of proposed substitutes (novel designs, repurposed materials) with limited testing against regulatory standards. We aimed to categorically test the efficacy and fit of potential N95 respirator substitutes using protocols that can be replicated in university laboratories. SETTING: Academic medical centre with occupational health-supervised fit testing along with laboratory studies. PARTICIPANTS: Seven adult volunteers who passed quantitative fit testing for small-sized (n=2) and regular-sized (n=5) commercial N95 respirators. METHODS: Five open-source potential N95 respirator substitutes were evaluated and compared with commercial National Institute for Occupational Safety and Health (NIOSH)-approved N95 respirators as controls. Fit testing using the 7-minute standardised Occupational Safety and Health Administration fit test was performed. In addition, protocols that can be performed in university laboratories for materials testing (filtration efficiency, air resistance and fluid resistance) were developed to evaluate alternate filtration materials. RESULTS: Among five open-source, improvised substitutes evaluated in this study, only one (which included a commercial elastomeric mask and commercial HEPA filter) passed a standard quantitative fit test. The four alternative materials evaluated for filtration efficiency (67%-89%) failed to meet the 95% threshold at a face velocity (7.6 cm/s) equivalent to that of a NIOSH particle filtration test for the control N95 FFR. In addition, for all but one material, the small surface area of two 3D-printed substitutes resulted in air resistance that was above the maximum in the NIOSH standard. CONCLUSIONS: Testing protocols such as those described here are essential to evaluate proposed improvised respiratory protection substitutes, and our testing platform could be replicated by teams with similar cross-disciplinary research capacity. Healthcare professionals should be cautious of claims associated with improvised respirators when suggested as FFR substitutes.


Subject(s)
COVID-19 , Occupational Exposure , Respiratory Protective Devices , Adult , Equipment Design , Humans , N95 Respirators , Pandemics/prevention & control , SARS-CoV-2 , United States , Ventilators, Mechanical
3.
Sci Rep ; 9(1): 8758, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217448

ABSTRACT

Corneal confocal microscopy (CCM) has been used to identify corneal nerve damage and increased Langerhans cell (LC) density in adults with Type 1 diabetes mellitus (T1DM). The purpose of this study was to evaluate whether corneal confocal microscopy can identify early corneal nerve damage and change in LC density in children and adolescents with T1DM. 64 participants with T1DM (age-14.6 ± 2.5 years, duration of diabetes-9.1 ± 2.7 years, HbA1c-75.66 ± 2.53 mmol/mol [9.1 ± 1.8%]) and 48 age-matched healthy control subjects underwent CCM. Sub-basal corneal nerve morphology and the density of mature and immature LCs was quantified. Corneal nerve fibre length and branch density were lower, whilst fibre density and tortuosity did not differ and both immature and mature LC density was significantly higher in T1DM compared to control subjects. There was no association between HbA1c and duration of diabetes with nerve fibre parameters or LC's density. Children and adolescents with T1DM demonstrate early immune activation and nerve degeneration.


Subject(s)
Cornea/innervation , Cornea/pathology , Diabetes Mellitus, Type 1/pathology , Diabetic Neuropathies/pathology , Langerhans Cells/pathology , Nerve Fibers/pathology , Adolescent , Child , Diabetes Mellitus, Type 1/blood , Diabetic Neuropathies/blood , Female , Glycated Hemoglobin/metabolism , Humans , Langerhans Cells/metabolism , Male , Nerve Fibers/metabolism
4.
Vaccine ; 25(14): 2541-4, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17240491

ABSTRACT

The capacity of an adjuvant to reduce the amount of antigen required in vaccines would be beneficial in a variety of settings, including situations where antigen is difficult or expensive to manufacture, or in situations where demand exceeds production capacity, such as pandemic influenza. The ability to reduce antigen dose would also be a significant advantage in combination vaccines, and vaccines that by necessity must contain multiple antigens to accommodate variability between strains or genotypes. ISCOMATRIX adjuvant was compared to aluminium hydroxide adjuvant (Al(OH3)) for induction of antibody responses and dose sparing of a recombinant HIV gp120 vaccine. Neutralising antibody responses were significantly greater, at the same protein dose, when the gp120 protein was formulated with ISCOMATRIX adjuvant compared to Al(OH3). Moreover, strong responses were achieved with up to 100-fold lower doses of gp120 using ISCOMATRIX adjuvant. Therefore, ISCOMATRIX adjuvant has the potential to substantially reduce the dose of antigen required in human vaccines, without compromising the immune response.


Subject(s)
AIDS Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Cholesterol/administration & dosage , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , Phospholipids/administration & dosage , Saponins/administration & dosage , Vaccines, Synthetic/administration & dosage , AIDS Vaccines/immunology , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Immunologic , Drug Combinations , Guinea Pigs
SELECTION OF CITATIONS
SEARCH DETAIL