Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Front Immunol ; 15: 1397579, 2024.
Article in English | MEDLINE | ID: mdl-38835755

ABSTRACT

Background: Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods: In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results: The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions: This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.


Subject(s)
Mice, Inbred BALB C , Plague Vaccine , Plague , Yersinia pestis , Animals , Female , Plague/prevention & control , Plague/immunology , Male , Yersinia pestis/immunology , Plague Vaccine/immunology , Plague Vaccine/administration & dosage , Mice , Antibodies, Bacterial/blood , Sex Characteristics , Sex Factors , Disease Models, Animal , Vaccine Efficacy
2.
Cureus ; 16(3): e55446, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38567241

ABSTRACT

Rib fractures are a common result of blunt thoracic trauma. Complications of rib fractures include pneumothorax, hemothorax, respiratory failure, and death. The conservative management of rib fractures has been the mainstay of care with surgical rib fixation as a secondary management only performed in complicated flail segments. The purpose of this retrospective study is to describe the outcomes of six patients who underwent surgical rib fixation following a traumatic injury at a Level 1 trauma center. All care for these cases was performed at Desert Regional Medical Center in Palm Springs, CA. On average, patients stayed 12.3 total days in the hospital and 4.6 in the intensive care unit. Out of the six patients, only one required prolonged respiratory support eventually resulting in respiratory failure and death. This retrospective study on surgical rib fixation highlights the importance of early surgical intervention and the need for more general and trauma surgeons to be familiar with the procedure itself.

4.
Neuropsychopharmacology ; 49(4): 640-648, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38212442

ABSTRACT

Electroconvulsive therapy (ECT) pulse amplitude, which dictates the induced electric field (E-field) magnitude in the brain, is presently fixed at 800 or 900 milliamperes (mA) without clinical or scientific rationale. We have previously demonstrated that increased E-field strength improves ECT's antidepressant effect but worsens cognitive outcomes. Amplitude-determined seizure titration may reduce the E-field variability relative to fixed amplitude ECT. In this investigation, we assessed the relationships among amplitude-determined seizure-threshold (STa), E-field magnitude, and clinical outcomes in older adults (age range 50 to 80 years) with depression. Subjects received brain imaging, depression assessment, and neuropsychological assessment pre-, mid-, and post-ECT. STa was determined during the first treatment with a Soterix Medical 4×1 High Definition ECT Multi-channel Stimulation Interface (Investigation Device Exemption: G200123). Subsequent treatments were completed with right unilateral electrode placement (RUL) and 800 mA. We calculated Ebrain defined as the 90th percentile of E-field magnitude in the whole brain for RUL electrode placement. Twenty-nine subjects were included in the final analyses. Ebrain per unit electrode current, Ebrain/I, was associated with STa. STa was associated with antidepressant outcomes at the mid-ECT assessment and bitemporal electrode placement switch. Ebrain/I was associated with changes in category fluency with a large effect size. The relationship between STa and Ebrain/I extends work from preclinical models and provides a validation step for ECT E-field modeling. ECT with individualized amplitude based on E-field modeling or STa has the potential to enhance neuroscience-based ECT parameter selection and improve clinical outcomes.


Subject(s)
Electroconvulsive Therapy , Humans , Aged , Middle Aged , Aged, 80 and over , Electroconvulsive Therapy/methods , Brain/diagnostic imaging , Brain/physiology , Seizures/therapy , Antidepressive Agents/therapeutic use , Cognition , Treatment Outcome
5.
Cureus ; 15(11): e48107, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38046710

ABSTRACT

Spontaneous bladder rupture is a rare cause of the acute abdomen. Alcohol has been described as one of the most common causes of spontaneous bladder rupture. We present the case of a 42-year-old male who presented to our Level I Trauma Center complaining of abdominal pain and difficulty urinating after an evening of drinking. Initial workup revealed free air and fluid within the abdomen and a Foley catheter within the peritoneal cavity. He was taken to the operating room emergently for exploration and was found to have a bladder rupture that was repaired. Post-operatively he recovered without complication. The often missed or delayed diagnosis of spontaneous bladder ruptures can increase morbidity and mortality. It is important to keep spontaneous bladder rupture in the differential when evaluating a patient with abdominal pain.

6.
Biodivers Data J ; 11: e109439, 2023.
Article in English | MEDLINE | ID: mdl-38078294

ABSTRACT

Tens of millions of images from biological collections have become available online over the last two decades. In parallel, there has been a dramatic increase in the capabilities of image analysis technologies, especially those involving machine learning and computer vision. While image analysis has become mainstream in consumer applications, it is still used only on an artisanal basis in the biological collections community, largely because the image corpora are dispersed. Yet, there is massive untapped potential for novel applications and research if images of collection objects could be made accessible in a single corpus. In this paper, we make the case for infrastructure that could support image analysis of collection objects. We show that such infrastructure is entirely feasible and well worth investing in.

7.
Science ; 382(6667): eadf2359, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824649

ABSTRACT

Single-cell transcriptomic studies have identified a conserved set of neocortical cell types from small postmortem cohorts. We extended these efforts by assessing cell type variation across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to one of 125 robust cell types identified in the middle temporal gyrus. However, we found interindividual variance in abundances and gene expression signatures, particularly in deep-layer glutamatergic neurons and microglia. A minority of donor variance is explainable by age, sex, ancestry, disease state, and cell state. Genomic variation was associated with expression of 150 to 250 genes for most cell types. This characterization of cellular variation provides a baseline for cell typing in health and disease.


Subject(s)
Temporal Lobe , Transcriptome , Adult , Humans , Epilepsy/metabolism , Gene Expression Profiling , Neurons/metabolism , Temporal Lobe/cytology , Temporal Lobe/metabolism , Nervous System Diseases/genetics , Mental Disorders/genetics
8.
Science ; 382(6667): eadf0805, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824667

ABSTRACT

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.


Subject(s)
Neocortex , Animals , Humans , Mice , Axons/metabolism , Interneurons/metabolism , Neocortex/cytology , Neocortex/metabolism , Pyramidal Cells/metabolism , Transcriptome
9.
Science ; 382(6667): eadf6484, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824669

ABSTRACT

Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid-producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was used to reliably target and analyze GABAergic neuron subclasses and individual transcriptomic types. This characterization elucidated transitions between PVALB and SST subclasses, revealed morphological heterogeneity within an abundant transcriptomic type, identified multiple spatially distinct types of the primate-specialized double bouquet cells (DBCs), and shed light on cellular differences between homologous mouse and human neocortical GABAergic neuron types. These results highlight the importance of multimodal phenotypic characterization for refinement of emerging transcriptomic cell type taxonomies and for understanding conserved and specialized cellular properties of human brain cell types.


Subject(s)
GABAergic Neurons , Interneurons , Neocortex , Animals , Humans , Mice , Electrophysiological Phenomena , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Interneurons/metabolism , Neocortex/cytology , Neocortex/metabolism , Patch-Clamp Techniques
10.
Front Psychiatry ; 14: 1215093, 2023.
Article in English | MEDLINE | ID: mdl-37593449

ABSTRACT

Introduction: Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention for late-life depression (LLD) but may have lower rates of response and remission owing to age-related brain changes. In particular, rTMS induced electric field strength may be attenuated by cortical atrophy in the prefrontal cortex. To identify clinical characteristics and treatment parameters associated with response, we undertook a pilot study of accelerated fMRI-guided intermittent theta burst stimulation (iTBS) to the right dorsolateral prefrontal cortex in 25 adults aged 50 or greater diagnosed with LLD and qualifying to receive clinical rTMS. Methods: Participants underwent baseline behavioral assessment, cognitive testing, and structural and functional MRI to generate individualized targets and perform electric field modeling. Forty-five sessions of iTBS were delivered over 9 days (1800 pulses per session, 50-min inter-session interval). Assessments and testing were repeated after 15 sessions (Visit 2) and 45 sessions (Visit 3). Primary outcome measure was the change in depressive symptoms on the Inventory of Depressive Symptomatology-30-Clinician (IDS-C-30) from Visit 1 to Visit 3. Results: Overall there was a significant improvement in IDS score with the treatment (Visit 1: 38.6; Visit 2: 31.0; Visit 3: 21.3; mean improvement 45.5%) with 13/25 (52%) achieving response and 5/25 (20%) achieving remission (IDS-C-30 < 12). Electric field strength and antidepressant effect were positively correlated in a subregion of the ventrolateral prefrontal cortex (VLPFC) (Brodmann area 47) and negatively correlated in the posterior dorsolateral prefrontal cortex (DLPFC). Conclusion: Response and remission rates were lower than in recently published trials of accelerated fMRI-guided iTBS to the left DLPFC. These results suggest that sufficient electric field strength in VLPFC may be a contributor to effective rTMS, and that modeling to optimize electric field strength in this area may improve response and remission rates. Further studies are needed to clarify the relationship of induced electric field strength with antidepressant effects of rTMS for LLD.

12.
Br J Cancer ; 129(7): 1152-1165, 2023 10.
Article in English | MEDLINE | ID: mdl-37596407

ABSTRACT

BACKGROUND: Many high-dose groups demonstrate increased leukaemia risks, with risk greatest following childhood exposure; risks at low/moderate doses are less clear. METHODS: We conducted a pooled analysis of the major radiation-associated leukaemias (acute myeloid leukaemia (AML) with/without the inclusion of myelodysplastic syndrome (MDS), chronic myeloid leukaemia (CML), acute lymphoblastic leukaemia (ALL)) in ten childhood-exposed groups, including Japanese atomic bomb survivors, four therapeutically irradiated and five diagnostically exposed cohorts, a mixture of incidence and mortality data. Relative/absolute risk Poisson regression models were fitted. RESULTS: Of 365 cases/deaths of leukaemias excluding chronic lymphocytic leukaemia, there were 272 AML/CML/ALL among 310,905 persons (7,641,362 person-years), with mean active bone marrow (ABM) dose of 0.11 Gy (range 0-5.95). We estimated significant (P < 0.005) linear excess relative risks/Gy (ERR/Gy) for: AML (n = 140) = 1.48 (95% CI 0.59-2.85), CML (n = 61) = 1.77 (95% CI 0.38-4.50), and ALL (n = 71) = 6.65 (95% CI 2.79-14.83). There is upward curvature in the dose response for ALL and AML over the full dose range, although at lower doses (<0.5 Gy) curvature for ALL is downwards. DISCUSSION: We found increased ERR/Gy for all major types of radiation-associated leukaemia after childhood exposure to ABM doses that were predominantly (for 99%) <1 Gy, and consistent with our prior analysis focusing on <100 mGy.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia , Neoplasms, Radiation-Induced , Radiation Exposure , Humans , Risk Factors , Leukemia/epidemiology , Radiation Exposure/adverse effects , Incidence , Radiation, Ionizing , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/etiology , Radiation Dosage
13.
Ann Neurol ; 94(6): 1048-1066, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37605362

ABSTRACT

OBJECTIVE: Because the role of white matter (WM) degenerating microglia (DM) in remyelination failure is unclear, we sought to define the core features of this novel population of aging human microglia. METHODS: We analyzed postmortem human brain tissue to define a population of DM in aging WM lesions. We used immunofluorescence staining and gene expression analysis to investigate molecular mechanisms related to the degeneration of DM. RESULTS: We found that DM, which accumulated myelin debris were selectively enriched in the iron-binding protein light chain ferritin, and accumulated PLIN2-labeled lipid droplets. DM displayed lipid peroxidation injury and enhanced expression for TOM20, a mitochondrial translocase, and a sensor of oxidative stress. DM also displayed enhanced expression of the DNA fragmentation marker phospho-histone H2A.X. We identified a unique set of ferroptosis-related genes involving iron-mediated lipid dysmetabolism and oxidative stress that were preferentially expressed in WM injury relative to gray matter neurodegeneration. INTERPRETATION: Ferroptosis appears to be a major mechanism of WM injury in Alzheimer's disease and vascular dementia. WM DM are a novel therapeutic target to potentially reduce the impact of WM injury and myelin loss on the progression of cognitive impairment. ANN NEUROL 2023;94:1048-1066.


Subject(s)
Ferroptosis , White Matter , Humans , Microglia/metabolism , White Matter/pathology , Aging/pathology , Brain/pathology
14.
PLoS Biol ; 21(6): e3002133, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37390046

ABSTRACT

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.


Subject(s)
Brain , Neurosciences , Animals , Humans , Mice , Ecosystem , Neurons
15.
Phys Rev Lett ; 130(24): 241402, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37390425

ABSTRACT

We produce gravitational waveforms for nonspinning compact binaries undergoing a quasicircular inspiral. Our approach is based on a two-timescale expansion of the Einstein equations in second-order self-force theory, which allows first-principles waveform production in tens of milliseconds. Although the approach is designed for extreme mass ratios, our waveforms agree remarkably well with those from full numerical relativity, even for comparable-mass systems. Our results will be invaluable in accurately modeling extreme-mass-ratio inspirals for the LISA mission and intermediate-mass-ratio systems currently being observed by the LIGO-Virgo-KAGRA Collaboration.

16.
Sci Rep ; 13(1): 9567, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311768

ABSTRACT

With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing technologies, spatial transcriptomics analysis is advancing rapidly, providing spatial location and gene expression information about cells in tissue sections at single cell resolution. Cell type classification of these spatially-resolved cells can be inferred by matching the spatial transcriptomics data to reference atlases derived from single cell RNA-sequencing (scRNA-seq) in which cell types are defined by differences in their gene expression profiles. However, robust cell type matching of the spatially-resolved cells to reference scRNA-seq atlases is challenging due to the intrinsic differences in resolution between the spatial and scRNA-seq data. In this study, we systematically evaluated six computational algorithms for cell type matching across four image-based spatial transcriptomics experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) conducted on the same mouse primary visual cortex (VISp) brain region. We find that many cells are assigned as the same type by multiple cell type matching algorithms and are present in spatial patterns previously reported from scRNA-seq studies in VISp. Furthermore, by combining the results of individual matching strategies into consensus cell type assignments, we see even greater alignment with biological expectations. We present two ensemble meta-analysis strategies used in this study and share the consensus cell type matching results in the Cytosplore Viewer ( https://viewer.cytosplore.org ) for interactive visualization and data exploration. The consensus matching can also guide spatial data analysis using SSAM, allowing segmentation-free cell type assignment.


Subject(s)
Primary Visual Cortex , Transcriptome , Animals , Mice , In Situ Hybridization, Fluorescence , Gene Expression Profiling , Algorithms
17.
PLoS Biol ; 21(4): e3002058, 2023 04.
Article in English | MEDLINE | ID: mdl-37079537

ABSTRACT

Genes associated with risk for brain disease exhibit characteristic expression patterns that reflect both anatomical and cell type relationships. Brain-wide transcriptomic patterns of disease risk genes provide a molecular-based signature, based on differential co-expression, that is often unique to that disease. Brain diseases can be compared and aggregated based on the similarity of their signatures which often associates diseases from diverse phenotypic classes. Analysis of 40 common human brain diseases identifies 5 major transcriptional patterns, representing tumor-related, neurodegenerative, psychiatric and substance abuse, and 2 mixed groups of diseases affecting basal ganglia and hypothalamus. Further, for diseases with enriched expression in cortex, single-nucleus data in the middle temporal gyrus (MTG) exhibits a cell type expression gradient separating neurodegenerative, psychiatric, and substance abuse diseases, with unique excitatory cell type expression differentiating psychiatric diseases. Through mapping of homologous cell types between mouse and human, most disease risk genes are found to act in common cell types, while having species-specific expression in those types and preserving similar phenotypic classification within species. These results describe structural and cellular transcriptomic relationships of disease risk genes in the adult brain and provide a molecular-based strategy for classifying and comparing diseases, potentially identifying novel disease relationships.


Subject(s)
Brain Diseases , Transcriptome , Adult , Animals , Humans , Mice , Basal Ganglia , Brain/metabolism , Brain Diseases/genetics , Brain Diseases/metabolism , Gene Expression Profiling/methods , Transcriptome/genetics , Transcriptome/physiology , Risk Factors
20.
Article in English | MEDLINE | ID: mdl-36925066

ABSTRACT

BACKGROUND: Electroconvulsive therapy (ECT) is efficacious for treatment-resistant depression. Treatment-induced cognitive impairment can adversely impact functional outcomes. Our pilot study linked the electric field to ictal theta power from a single suprathreshold treatment and linked ictal theta power to changes in phonemic fluency. In this study, we set out to replicate our findings and expand upon the utility of ictal theta power as a potential cognitive biomarker. METHODS: Twenty-seven participants (18 female and 9 male) received right unilateral ECT for treatment-resistant depression. Pre-ECT magnetic resonance imaging and finite element modeling determined the 90th percentile maximum electric field in the brain. Two-lead electroencephalographs were digitally captured across the ECT course, with the earliest suprathreshold treatment used to determine power spectral density. Clinical and cognitive outcomes were assessed pre-, mid-, and post-ECT. We assessed the relationship between the electric field in the brain, ictal theta power, clinical outcome (Inventory of Depressive Symptomatology), and cognitive outcomes (phonemic and semantic fluency) with linear models. RESULTS: Ictal theta power in the Fp1 and Fp2 channels was associated with the electric field, antidepressant outcome, and phonemic and semantic fluency. The relationship between ictal theta power and phonemic fluency was strengthened in the longitudinal analysis. The electric field in the brain was directly associated with phonemic and semantic fluency but not with antidepressant outcome. CONCLUSIONS: Ictal theta power is a potential cognitive biomarker early on in the ECT course to help guide parameter changes. Larger studies are needed to further assess ictal theta power's role in predicting mood outcome and changes with ECT parameters.


Subject(s)
Electroconvulsive Therapy , Humans , Male , Female , Electroconvulsive Therapy/methods , Pilot Projects , Brain , Electroencephalography/methods , Antidepressive Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...