Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
BMC Ecol Evol ; 24(1): 76, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862907

ABSTRACT

BACKGROUND: Understanding biodiversity patterns is a central topic in biogeography and ecology, and it is essential for conservation planning and policy development. Diversity estimates that consider the evolutionary relationships among species, such as phylogenetic diversity and phylogenetic endemicity indices, provide valuable insights into the functional diversity and evolutionary uniqueness of biological communities. These estimates are crucial for informed decision-making and effective global biodiversity management. However, the current methodologies used to generate these metrics encounter challenges in terms of efficiency, accuracy, and data integration. RESULTS: We introduce PhyloNext, a flexible and data-intensive computational pipeline designed for phylogenetic diversity and endemicity analysis. The pipeline integrates GBIF occurrence data and OpenTree phylogenies with the Biodiverse software. PhyloNext is free, open-source, and provided as Docker and Singularity containers for effortless setup. To enhance user accessibility, a user-friendly, web-based graphical user interface has been developed, facilitating easy and efficient navigation for exploring and executing the pipeline. PhyloNext streamlines the process of conducting phylogenetic diversity analyses, improving efficiency, accuracy, and reproducibility. The automated workflow allows for periodic reanalysis using updated input data, ensuring that conservation strategies remain relevant and informed by the latest available data. CONCLUSIONS: PhyloNext provides researchers, conservationists, and policymakers with a powerful tool to facilitate a broader understanding of biodiversity patterns, supporting more effective conservation planning and policy development. This new pipeline simplifies the creation of reproducible and easily updatable phylogenetic diversity analyses. Additionally, it promotes increased interoperability and integration with other biodiversity databases and analytical tools.


Subject(s)
Biodiversity , Phylogeny , Software
2.
Nucleic Acids Res ; 52(D1): D791-D797, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953409

ABSTRACT

UNITE (https://unite.ut.ee) is a web-based database and sequence management environment for molecular identification of eukaryotes. It targets the nuclear ribosomal internal transcribed spacer (ITS) region and offers nearly 10 million such sequences for reference. These are clustered into ∼2.4M species hypotheses (SHs), each assigned a unique digital object identifier (DOI) to promote unambiguous referencing across studies. UNITE users have contributed over 600 000 third-party sequence annotations, which are shared with a range of databases and other community resources. Recent improvements facilitate the detection of cross-kingdom biological associations and the integration of undescribed groups of organisms into everyday biological pursuits. Serving as a digital twin for eukaryotic biodiversity and communities worldwide, the latest release of UNITE offers improved avenues for biodiversity discovery, precise taxonomic communication and integration of biological knowledge across platforms.


Subject(s)
Databases, Nucleic Acid , Fungi , DNA, Ribosomal Spacer , Fungi/genetics , Biodiversity , DNA, Fungal , Phylogeny
3.
Sci Adv ; 9(7): eade4954, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36800419

ABSTRACT

Early natural historians-Comte de Buffon, von Humboldt, and De Candolle-established environment and geography as two principal axes determining the distribution of groups of organisms, laying the foundations for biogeography over the subsequent 200 years, yet the relative importance of these two axes remains unresolved. Leveraging phylogenomic and global species distribution data for Mimosoid legumes, a pantropical plant clade of c. 3500 species, we show that the water availability gradient from deserts to rain forests dictates turnover of lineages within continents across the tropics. We demonstrate that 95% of speciation occurs within a precipitation niche, showing profound phylogenetic niche conservatism, and that lineage turnover boundaries coincide with isohyets of precipitation. We reveal similar patterns on different continents, implying that evolution and dispersal follow universal processes.


Subject(s)
Biodiversity , Ecosystem , Phylogeny , Geography , Rainforest , Tropical Climate
4.
Sci Data ; 9(1): 708, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396659

ABSTRACT

The Legume Phylogeny Working Group's Taxonomy Working Group was tasked to create a community endorsed global legume checklist that will serve as a primary source of taxa for biodiversity data platforms and legume-related research. The checklist was published in June 2021, recognising 772 genera and 22,360 species. It is disseminated through the new Legume Data Portal as part of the Global Biodiversity Information Facility (GBIF) hosted portal initiative. The process that was followed to publish and disseminate the checklist and its content is described here. The impact of the work by the Taxonomy Working Group are quantified by comparing the published checklist with the GBIF taxonomic backbone. A total of 44,157 names overlapped with the GBIF taxonomic backbone while 30,456 names were added, which enabled more accurate name matching of 61,235 legume occurrences. Continuous improvement to the World Checklist of Vascular Plants (WCVP): Fabaceae checklist will allow the GBIF taxonomic backbone and other checklist managers to converge to a consistent and comprehensive list of legume taxa globally over time.


Subject(s)
Fabaceae , Biodiversity , Checklist , Phylogeny
5.
Bioscience ; 72(10): 978-987, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36196222

ABSTRACT

The early twenty-first century has witnessed massive expansions in availability and accessibility of digital data in virtually all domains of the biodiversity sciences. Led by an array of asynchronous digitization activities spanning ecological, environmental, climatological, and biological collections data, these initiatives have resulted in a plethora of mostly disconnected and siloed data, leaving to researchers the tedious and time-consuming manual task of finding and connecting them in usable ways, integrating them into coherent data sets, and making them interoperable. The focus to date has been on elevating analog and physical records to digital replicas in local databases prior to elevating them to ever-growing aggregations of essentially disconnected discipline-specific information. In the present article, we propose a new interconnected network of digital objects on the Internet-the Digital Extended Specimen (DES) network-that transcends existing aggregator technology, augments the DES with third-party data through machine algorithms, and provides a platform for more efficient research and robust interdisciplinary discovery.

6.
J Integr Plant Biol ; 64(1): 105-117, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34773376

ABSTRACT

The flora of China is well known for its high diversity and endemism. Identifying centers of endemism and designating conservation priorities are essential goals for biodiversity studies. However, there is no comprehensive study from a rigorous phylogenetic perspective to understand patterns of diversity and endemism and to guide biodiversity conservation in China. We conducted a spatial phylogenetic analysis of the Chinese angiosperm flora at the generic level to identify centers of neo- and paleo-endemism. Our results indicate that: (i) the majority of grid cells in China with significantly high phylogenetic endemism (PE) were located in the mountainous regions; (ii) four of the nine centers of endemism recognized, located in northern and western China, were recognized for the first time; (iii) arid and semiarid regions in Northwest China were commonly linked to significant PE, consistent with other spatial phylogenetic studies worldwide; and (iv) six high-priority conservation gaps were detected by overlaying the boundaries of China's nature reserves on all significant PE cells. Overall, we conclude that the mountains of southern and northern China contain both paleo-endemics (ancient relictual lineages) and neo-endemics (recently diverged lineages). The areas we highlight as conservation priorities are important for broad-scale planning, especially in the context of evolutionary history preservation.


Subject(s)
Magnoliopsida , Biodiversity , Biological Evolution , China , Magnoliopsida/genetics , Phylogeny
7.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221394, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1394014

ABSTRACT

Abstract speciesLink is a large-scale biodiversity information portal that exists thanks to a broad collaborative network of people and institutions. CRIA's involvement with the scientific community of Brazil and other countries is responsible for the significant results achieved, currently reaching more than 15 million primary biodiversity data records, 95% of which are associated with preserved specimens and about 25% with high-quality digital images. The network provides data on over 200,000 species, of which over 110,000 occur in Brazil. This article describes thematic networks within speciesLink, as well as some of the most useful tools developed. The importance and contributions of speciesLink are outlined, as are concerns about securing stable budgetary support for such biodiversity data e-infrastructures. Here we review the value of speciesLink as a major source of biodiversity information for research, education, informed decision-making, policy development, and bioeconomy.


Resumo speciesLink é um portal de informações em larga escala sobre biodiversidade, que existe graças a uma ampla rede colaborativa de pessoas e instituições. O envolvimento do CRIA com a comunidade científica do Brasil e de outros países é responsável pelos resultados expressivos alcançados, atingindo atualmente mais de 15 milhões de registros de dados primários de biodiversidade, sendo 95% associados a espécimes preservados e cerca de 25% a imagens digitais de alta qualidade. A rede fornece dados sobre mais de 200.000 espécies, das quais mais de 110.000 ocorrem no Brasil. Este artigo descreve as redes temáticas do speciesLink, bem como algumas das ferramentas mais úteis desenvolvidas. A importância e as contribuições do speciesLink são destacadas, assim como as preocupações em garantir um apoio financeiro estável para e-infraestruturas de dados sobre biodiversidade. Aqui revisamos o valor do speciesLink como uma das principais fontes de informação sobre biodiversidade para pesquisa, educação, tomada de decisão, desenvolvimento de políticas e bioeconomia.

8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526679

ABSTRACT

The accessibility of global biodiversity information has surged in the past two decades, notably through widespread funding initiatives for museum specimen digitization and emergence of large-scale public participation in community science. Effective use of these data requires the integration of disconnected datasets, but the scientific impacts of consolidated biodiversity data networks have not yet been quantified. To determine whether data integration enables novel research, we carried out a quantitative text analysis and bibliographic synthesis of >4,000 studies published from 2003 to 2019 that use data mediated by the world's largest biodiversity data network, the Global Biodiversity Information Facility (GBIF). Data available through GBIF increased 12-fold since 2007, a trend matched by global data use with roughly two publications using GBIF-mediated data per day in 2019. Data-use patterns were diverse by authorship, geographic extent, taxonomic group, and dataset type. Despite facilitating global authorship, legacies of colonial science remain. Studies involving species distribution modeling were most prevalent (31% of literature surveyed) but recently shifted in focus from theory to application. Topic prevalence was stable across the 17-y period for some research areas (e.g., macroecology), yet other topics proportionately declined (e.g., taxonomy) or increased (e.g., species interactions, disease). Although centered on biological subfields, GBIF-enabled research extends surprisingly across all major scientific disciplines. Biodiversity data mobilization through global data aggregation has enabled basic and applied research use at temporal, spatial, and taxonomic scales otherwise not possible, launching biodiversity sciences into a new era.


Subject(s)
Biodiversity , Databases, Factual/standards , Animals , Classification , Humans , Museums
9.
New Phytol ; 226(2): 609-622, 2020 04.
Article in English | MEDLINE | ID: mdl-31792997

ABSTRACT

Australia is an excellent setting to explore relationships between climate change and diversification dynamics. Aridification since the Eocene has resulted in spectacular radiations within one or more Australian biomes. Acacia is the largest plant genus on the Australian continent, with around 1000 species, and is present in all biomes. We investigated the macroevolutionary dynamics of Acacia within climate space. We analysed phylogenetic and climatic data for 503 Acacia species to estimate a time-calibrated phylogeny and central climatic tendencies for BioClim layers from 132 000 herbarium specimens. Diversification rate heterogeneity and rates of climate space exploration were tested. We inferred two diversification rate increases, both associated with significantly higher rates of climate space exploration. Observed spikes in climate disparity within the Pleistocene correspond with onset of Pleistocene glacial-interglacial cycling. Positive time dependency in environmental disparity applies in the basal grade of Acacia, though climate space exploration rates were lower. Incongruence between rates of climate space exploration and disparity suggests different Acacia lineages have experienced different macroevolutionary processes. The second diversification rate increase is associated with a south-east Australian mesic lineage, suggesting adaptations to progressively aridifying environments and ability to transition into mesic environments contributed to Acacia's dominance across Australia.


Subject(s)
Acacia , Space Flight , Australia , Ecosystem , Phylogeny
10.
Proc Biol Sci ; 286(1897): 20182477, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30963833

ABSTRACT

Biological invasions are on the rise globally. To reduce future invasions, it is imperative to determine the naturalization potential of species. Until now, screening approaches have relied largely on species-specific functional feature data. Such information is, however, time-consuming and expensive to collect, thwarting the screening of large numbers of potential invaders. We propose to resolve such data limitations by developing indicators of establishment success of alien species that can be readily derived from open-access databases. These indicators describe key features of successfully established aliens, including estimates of potential range size, niche overlap with human-disturbed environments, and proxies of species traits related to their palaeoinvasions and local dominance capacities. We demonstrate the utility of this new approach by applying it to two large and highly invasive plant groups: Australian acacias and eucalypts. Our results show that these indicators robustly predict establishment successes and failures in each clade independently, and that they can cross-predict establishment in these two clades. Interestingly, the indicator identified as most important was species potential range size on Earth, a variable too rarely considered as a predictor. By successfully identifying key features that predispose Australian plants to naturalize, we provide an objective and cost-effective protocol for flagging high-risk introductions.


Subject(s)
Ecosystem , Introduced Species , Life History Traits , Plant Dispersal , Plant Physiological Phenomena , Acacia/physiology , Australia , Eucalyptus/physiology , Population Dynamics , Species Specificity
11.
Bioinformatics ; 35(7): 1229-1230, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30202854

ABSTRACT

SUMMARY: Phylolink is a research collaboration toolkit through which biodiversity can be explored from a phylogenetic perspective. It is an update of PhyloJiVE that has been integrated into the framework of the Atlas of Living Australia, including its spatial portal. Phylolink connects phylogenetic tree nodes with species occurrence records, environmental data, and species trait information. Features new to Phylolink allow users to upload and download spatial datasets, store files and link to the ALA spatial portal, improve graphics and provide the novel ability to analyze environmental attributes of species and clades distributions. Species richness and phylogenetic diversity comparisons can be made among geographic areas. The result is a powerful way of combining data to generate flexible and customizable visualizations, profiles and metrics for biodiversity. AVAILABILITY AND IMPLEMENTATION: Phylolink is available at the Atlas of Living Australia, http://phylolink.ala.org.au/. It works on any browser and users can select from a range of stored phylogenetic trees and spatial datasets, or upload their own.


Subject(s)
Benchmarking , Ascomycota , Biodiversity , Phylogeny , Software
12.
Cladistics ; 35(6): 654-670, 2019 Dec.
Article in English | MEDLINE | ID: mdl-34618948

ABSTRACT

We present the largest comparative biogeographical analysis that has complete coverage of Australia's geography (20 phytogeographical subregions), using the most complete published molecular phylogenies to date of large Australian plant clades (Acacia, Banksia and the eucalypts). Two distinct sets of areas within the Australian flora were recovered, using distributional data from the Australasian Virtual Herbarium (AVH) and the Atlas of Living Australia (ALA): younger Temperate, Eremaean and Monsoonal biomes, and older southwest + west, southeast and northern historical biogeographical regions. The analyses showed that by partitioning the data into two sets, using either a Majority or a Frequency method to select taxon distributions, two equally valid results were found. The dataset that used a Frequency method discovered general area cladograms that resolved patterns of the Australian biomes, whereas if widespread taxa (Majority method, with >50% of occurrences outside a single subregion) were removed the analysis then recovered historical biogeographical regions. The study highlights the need for caution when processing taxon distributions prior to analysis as, in the case of the history of Australian phytogeography, the validity of both biomes and historical areas have been called into question.

13.
Nature ; 554(7691): 234-238, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29420476

ABSTRACT

High species diversity may result from recent rapid speciation in a 'cradle' and/or the gradual accumulation and preservation of species over time in a 'museum'. China harbours nearly 10% of angiosperm species worldwide and has long been considered as both a museum, owing to the presence of many species with hypothesized ancient origins, and a cradle, as many lineages have originated as recent topographic changes and climatic shifts-such as the formation of the Qinghai-Tibetan Plateau and the development of the monsoon-provided new habitats that promoted remarkable radiation. However, no detailed phylogenetic study has addressed when and how the major components of the Chinese angiosperm flora assembled to form the present-day vegetation. Here we investigate the spatio-temporal divergence patterns of the Chinese flora using a dated phylogeny of 92% of the angiosperm genera for the region, a nearly complete species-level tree comprising 26,978 species and detailed spatial distribution data. We found that 66% of the angiosperm genera in China did not originate until early in the Miocene epoch (23 million years ago (Mya)). The flora of eastern China bears a signature of older divergence (mean divergence times of 22.04-25.39 Mya), phylogenetic overdispersion (spatial co-occurrence of distant relatives) and higher phylogenetic diversity. In western China, the flora shows more recent divergence (mean divergence times of 15.29-18.86 Mya), pronounced phylogenetic clustering (co-occurrence of close relatives) and lower phylogenetic diversity. Analyses of species-level phylogenetic diversity using simulated branch lengths yielded results similar to genus-level patterns. Our analyses indicate that eastern China represents a floristic museum, and western China an evolutionary cradle, for herbaceous genera; eastern China has served as both a museum and a cradle for woody genera. These results identify areas of high species richness and phylogenetic diversity, and provide a foundation on which to build conservation efforts in China.


Subject(s)
Biodiversity , Magnoliopsida/classification , Phylogeny , China , Conservation of Natural Resources/methods , Evolution, Molecular , Geographic Mapping , Regression Analysis , Spatio-Temporal Analysis
14.
Phytochemistry ; 144: 197-207, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28957714

ABSTRACT

Many studies quantify total phenolics or total tannins, but understanding the ecological role of polyphenolic secondary metabolites requires at least an understanding of the diversity of phenolic groups present. We used UPLC-MS/MS to measure concentrations of different polyphenol groups - including the four most common tannin groups, the three most common flavonoid groups, and quinic acid derivatives - in foliage from 628 eucalypts from the genera Eucalyptus, Angophora and Corymbia. We also tested for phylogenetic signal in each of the phenolic groups. Many eucalypts contained high concentrations of polyphenols, particularly ellagitannins, which have been relatively poorly studied, but may possess strong oxidative activity. Because the biosynthetic pathways of many phenolic compounds share either precursors or enzymes, we found negative correlations between the concentrations of several of the constituents that we measured, including proanthocyanidins (PAs) and hydrolysable tannins (HTs), HTs and flavonol derivatives, and HTs and quinic acid derivatives. We observed moderate phylogenetic signal in all polyphenol constituents, apart from the concentration of the prodelphinidin subunit of PAs and the mean degree of polymerisation of PAs. These two traits, which have previously been shown to be important in determining plants' protein precipitation capacity, may have evolved under selection, perhaps in response to climate or herbivore pressure. Hence, the signature of evolutionary history appears to have been erased for these traits. This study is an important step in moving away from analysing "totals" to a better understanding of how phylogenetic effects influence phenolic composition, and how this in turn influences ecological processes.


Subject(s)
Eucalyptus/chemistry , Polyphenols/analysis , Molecular Structure , Phylogeny , Tannins/analysis
15.
Evolution ; 70(7): 1473-85, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27241367

ABSTRACT

The ecological and evolutionary factors that drive the emergence and maintenance of variation in mutualistic benefit (i.e., the benefits provided by one partner to another) in mutualistic symbioses are not well understood. In this study, we evaluated the role that host and symbiont phylogeny might play in determining patterns of mutualistic benefit for interactions among nine species of Acacia and 31 strains of nitrogen-fixing rhizobial bacteria. Using phylogenetic comparative methods we compared patterns of variation in mutualistic benefit (host response to inoculation) to rhizobial phylogenies constructed from housekeeping and symbiosis genes; and a multigene host phylogeny. We found widespread genotype-by-genotype variation in patterns of plant growth. A relatively large component of this variation (21-28%) was strongly influenced by the interacting evolutionary histories of both partners, such that phylogenetically similar host species had similar growth responses when inoculated with phylogenetically similar rhizobia. We also found a relatively large nonphylogenetic effect for the average mutualistic benefit provided by rhizobia to plants, such that phylogenetic relatedness did not predict the overall benefit provided by rhizobia across all hosts. We conclude that phylogenetic relatedness should frequently predict patterns of mutualistic benefit in acacia-rhizobial mutualistic interactions; but that some mutualistic traits also evolve independently of the phylogenies.


Subject(s)
Acacia/microbiology , Acacia/physiology , Biological Evolution , Rhizobium/physiology , Symbiosis , Bacterial Proteins/genetics , N-Acetylglucosaminyltransferases/genetics , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics
16.
AoB Plants ; 2016 Dec 30.
Article in English | MEDLINE | ID: mdl-28039115

ABSTRACT

For a plant species to become invasive it has to progress along the introduction-naturalization-invasion (INI) continuum which reflects the joint direction of niche breadth. Identification of traits that correlate with and drive species invasiveness along the continuum is a major focus of invasion biology. If invasiveness is underlain by heritable traits, and if such traits are phylogenetically conserved, then we would expect non-native species with different introduction status (i.e. position along the INI continuum) to show phylogenetic signal. This study uses two clades that contain a large number of invasive tree species from the genera Acacia and Eucalyptus to test whether geographic distribution and a novel phylogenetic conservation method can predict which species have been introduced, became naturalized, and invasive. Our results suggest that no underlying phylogenetic signal underlie the introduction status for both groups of trees, except for introduced acacias. The more invasive acacia clade contains invasive species that have smoother geographic distributions and are more marginal in the phylogenetic network. The less invasive eucalyptus group contains invasive species that are more clustered geographically, more centrally located in the phylogenetic network and have phylogenetic distances between invasive and non-invasive species that are trending toward the mean pairwise distance. This suggests that highly invasive groups may be identified because they have invasive species with smoother and faster expanding native distributions and are located more to the edges of phylogenetic networks than less invasive groups.

17.
Mol Phylogenet Evol ; 96: 1-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26702955

ABSTRACT

Combining whole genome data with previously obtained amplicon sequences has the potential to increase the resolution of phylogenetic analyses, particularly at low taxonomic levels or where recent divergence, rapid speciation or slow genome evolution has resulted in limited sequence variation. However, the integration of these types of data for large scale phylogenetic studies has rarely been investigated. Here we conduct a phylogenetic analysis of the whole chloroplast genome and two nuclear ribosomal loci for 65 Acacia species from across the most recent Acacia phylogeny. We then combine this data with previously generated amplicon sequences (four chloroplast loci and two nuclear ribosomal loci) for 508 Acacia species. We use several phylogenetic methods, including maximum likelihood bootstrapping (with and without constraint) and ExaBayes, in order to determine the success of combining a dataset of 4000bp with one of 189,000bp. The results of our study indicate that the inclusion of whole genome data gave a far better resolved and well supported representation of the phylogenetic relationships within Acacia than using only amplicon sequences, with the greatest support observed when using a whole genome phylogeny as a constraint on the amplicon sequences. Our study therefore provides methods for optimal integration of genomic and amplicon sequences.


Subject(s)
Acacia/genetics , Genome, Chloroplast/genetics , Phylogeny , Bayes Theorem , Chloroplasts/genetics , DNA, Chloroplast/genetics , Datasets as Topic , Genetic Variation/genetics , Likelihood Functions
18.
Sci Total Environ ; 534: 131-43, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-25976346

ABSTRACT

Phylodiversity measures summarise the phylogenetic diversity patterns of groups of organisms. By using branches of the tree of life, rather than its tips (e.g., species), phylodiversity measures provide important additional information about biodiversity that can improve conservation policy and outcomes. As a biodiverse nation with a strong legislative and policy framework, Australia provides an opportunity to use phylogenetic information to inform conservation decision-making. We explored the application of phylodiversity measures across Australia with a focus on two highly biodiverse regions, the south west of Western Australia (SWWA) and the South East Queensland bioregion (SEQ). We analysed seven diverse groups of organisms spanning five separate phyla on the evolutionary tree of life, the plant genera Acacia and Daviesia, mammals, hylid frogs, myobatrachid frogs, passerine birds, and camaenid land snails. We measured species richness, weighted species endemism (WE) and two phylodiversity measures, phylogenetic diversity (PD) and phylogenetic endemism (PE), as well as their respective complementarity scores (a measure of gains and losses) at 20 km resolution. Higher PD was identified within SEQ for all fauna groups, whereas more PD was found in SWWA for both plant groups. PD and PD complementarity were strongly correlated with species richness and species complementarity for most groups but less so for plants. PD and PE were found to complement traditional species-based measures for all groups studied: PD and PE follow similar spatial patterns to richness and WE, but highlighted different areas that would not be identified by conventional species-based biodiversity analyses alone. The application of phylodiversity measures, particularly the novel weighted complementary measures considered here, in conservation can enhance protection of the evolutionary history that contributes to present day biodiversity values of areas. Phylogenetic measures in conservation can include important elements of biodiversity in conservation planning, such as evolutionary potential and feature diversity that will improve decision-making and lead to better biodiversity conservation outcomes.


Subject(s)
Biodiversity , Conservation of Natural Resources/legislation & jurisprudence , Environmental Policy , Plants/classification , Australia , Conservation of Natural Resources/methods
19.
Front Genet ; 6: 132, 2015.
Article in English | MEDLINE | ID: mdl-25926846

ABSTRACT

Because ferns have a wide range of habitat preferences and are widely distributed, they are an ideal group for understanding how diversity is distributed. Here we examine fern diversity on a broad-scale using standard and corrected richness measures as well as phylogenetic indices; in addition we determine the environmental predictors of each diversity metric. Using the combined records of Australian herbaria, a dataset of over 60,000 records was obtained for 89 genera to infer richness. A molecular phylogeny of all the genera was constructed and combined with the herbarium records to obtain phylogenetic diversity patterns. A hotspot of both taxic and phylogenetic diversity occurs in the Wet Tropics of northeastern Australia. Although considerable diversity is distributed along the eastern coast, some important regions of diversity are identified only after sample-standardization of richness and through the phylogenetic metric. Of all of the metrics, annual precipitation was identified as the most explanatory variable, in part, in agreement with global and regional fern studies. However, precipitation was combined with a different variable for each different metric. For corrected richness, precipitation was combined with temperature seasonality, while correlation of phylogenetic diversity to precipitation plus radiation indicated support for the species-energy hypothesis. Significantly high and significantly low phylogenetic diversity were found in geographically separate areas. These separate areas correlated with different climatic conditions such as seasonality in precipitation. The phylogenetic metrics identified additional areas of significant diversity, some of which have not been revealed using traditional taxonomic analyses, suggesting that different ecological and evolutionary processes have operated over the continent. Our study demonstrates that it is possible and vital to incorporate evolutionary metrics when inferring biodiversity hotspots from large compilations of data.

20.
Am J Bot ; 102(4): 581-97, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25878091

ABSTRACT

PREMISE OF THE STUDY: The classification of the primarily Australasian group of orchids Caladenia and allied genera (Caladeniinae: Diurideae) containing 71 federally listed threatened species has proven controversial. Analyzing these species using genetic material will provide a sound basis for their classification and the capacity to ensure accurate conservation measures can be implemented. METHODS: We present a multigene analysis based on nuclear ribosomal ITS and five plastid regions from 54 species representing all major taxonomic groups within Caladeniinae. KEY RESULTS: In our combined analysis, apart from Leptoceras and Praecoxanthus, all Caladenia ingroup taxa form a strongly supported clade that is also supported by morphological synapomorphies (parallel leaf venation; leaf solitary, lanceolate, covered with glandular or eglandular trichomes). Characters and character states historically used to delimit taxa were revealed to be homoplasious and therefore do not support recognition of Arachnorchis, Cyanicula, Drakonorchis, Ericksonella, Jonesiopsis, Petalochilus, Pheladenia, and Stegostyla as previously proposed. Glossodia and Elythranthera are shown to be a specialist group embedded within Caladenia. CONCLUSIONS: Based on our results, none of the current systems of classification of the subtribe is satisfactory. Instead our results point to Lindley's 1840 interpretation of Caladenia, but including Glossodia and Elythranthera, as being the most accurate reflection of the group. Accordingly, a renewed reclassification of Caladeniinae is proposed as well as several new combinations.


Subject(s)
Chloroplast Proteins/genetics , Evolution, Molecular , Orchidaceae/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chloroplast Proteins/metabolism , Endangered Species , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL