Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
IEEE Trans Med Imaging ; PP2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240738

ABSTRACT

3D multi-slab acquisitions are an appealing approach for diffusion MRI because they are compatible with the imaging regime delivering optimal SNR efficiency. In conventional 3D multi-slab imaging, shot-to-shot phase variations caused by motion pose challenges due to the use of multi-shot k-space acquisition. Navigator acquisition after each imaging echo is typically employed to correct phase variations, which prolongs scan time and increases the specific absorption rate (SAR). The aim of this study is to develop a highly efficient, self-navigated method to correct for phase variations in 3D multi-slab diffusion MRI without explicitly acquiring navigators. The sampling of each shot is carefully designed to intersect with the central kz=0 plane of each slab, and the multi-shot sampling is optimized for self-navigation performance while retaining decent reconstruction quality. The kz=0 intersections from all shots are jointly used to reconstruct a 2D phase map for each shot using a structured low-rank constrained reconstruction that leverages the redundancy in shot and coil dimensions. The phase maps are used to eliminate the shot-to-shot phase inconsistency in the final 3D multi-shot reconstruction. We demonstrate the method's efficacy using retrospective simulations and prospectively acquired in-vivo experiments at 1.22 mm and 1.09 mm isotropic resolutions. Compared to conventional navigated 3D multi-slab imaging, the proposed self-navigated method achieves comparable image quality while shortening the scan time by 31.7% and improving the SNR efficiency by 15.5%. The proposed method produces comparable quality of DTI and white matter tractography to conventional navigated 3D multi-slab acquisition with a much shorter scan time.

2.
Nat Med ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312956

ABSTRACT

The spectrum, pathophysiology, and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the one-year cognitive, serum biomarker, and neuroimaging findings from a prospective, national study of cognition in 351 COVID-19 patients who had required hospitalisation, compared to 2,927 normative matched controls. Cognitive deficits were global and associated with elevated brain injury markers, and reduced anterior cingulate cortex volume one year after COVID-19. The severity of the initial infective insult, post-acute psychiatric symptoms, and a history of encephalopathy were associated with greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Longitudinal follow-up in 106 patients demonstrated a trend toward recovery. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 may be immune-mediated, and should guide the development of therapeutic strategies.

3.
Health Serv Res ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056425

ABSTRACT

OBJECTIVE: To develop, deploy, and evaluate a national, electronic health record (EHR)-based dashboard to support safe prescribing of biologic and targeted synthetic disease-modifying agents (b/tsDMARDs) in the United States Veterans Affairs Healthcare System (VA). DATA SOURCES AND STUDY SETTING: We extracted and displayed hepatitis B (HBV), hepatitis C (HCV), and tuberculosis (TB) screening data from the EHR for users of b/tsDMARDs using PowerBI (Microsoft) and deployed the dashboard to VA facilities across the United States in 2022; we observed facilities for 44 weeks post-deployment. STUDY DESIGN: We examined the association between dashboard engagement by healthcare personnel and the percentage of patients with all screenings complete (HBV, HCV, and TB) at the facility level using an interrupted time series. Based on frequency of sessions, facilities were grouped into high- and low/none-engagement categories. We modeled changes in complete screening pre- and post-deployment of the dashboard. DATA COLLECTION METHODS: All VA facilities were eligible for inclusion; excluded facilities participated in design of the dashboard or had <20 patients receiving b/tsDMARDs. Session counts from facility personnel were captured using PowerBI audit log data. Outcomes were assessed weekly based on EHR data extracted via the dashboard itself. PRINCIPAL FINDINGS: Totally 117 facilities (serving a total of 41,224 Veterans prescribed b/tsDMARDs) were included. Before dashboard deployment, across all facilities, 61.5% of patients had all screenings complete, which improved to 66.3% over the course of the study period. The largest improvement (15 percentage points, 60.3%-75.3%) occurred among facilities with high engagement (post-intervention difference in outcome between high and low/none-engagement groups was 0.17 percentage points (pp) per week, 95% confidence interval (0.04 pp, 0.30 pp); p = 0.01). CONCLUSIONS: We observed significant improvements in screening for latent infections among facilities with high engagement with the dashboard, compared with those with fewer sessions.

4.
Nat Commun ; 15(1): 5963, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013855

ABSTRACT

While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques. However, while functional organisation in both species followed an anterior-posterior axis, we observed a marked reconfiguration in the latter across species, which mirrors a rudimentary integration of the default-mode-network in non-human primates. Here we show that microstructurally preserved regions like the hippocampus may still undergo functional reconfiguration in primate evolution, due to their embedding within heteromodal association networks.


Subject(s)
Biological Evolution , Hippocampus , Animals , Hippocampus/physiology , Hippocampus/anatomy & histology , Hippocampus/diagnostic imaging , Humans , Male , Female , Macaca , Magnetic Resonance Imaging/methods , Primates/physiology , Primates/anatomy & histology , Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Nerve Net/anatomy & histology , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/anatomy & histology , Neural Pathways/physiology , Neural Pathways/anatomy & histology , Macaca mulatta
5.
Hum Brain Mapp ; 45(3): e26597, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38375948

ABSTRACT

Although functional magnetic resonance imaging (fMRI) is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0 . Increasing field strength enables higher spatial resolution and improved sensitivity to blood oxygenation level-dependent (BOLD) signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D echo-planar imaging (EPI) protocols, which differ in sensitivity to spatial and temporal B0 inhomogeneity. The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. All protocols used 3 mm slice thickness. For each protocol, the BOLD response to 13 10-s noxious thermal stimuli applied to the right thumb was acquired in a 10-min fMRI run. Image quality, temporal signal to noise ratio (SNR), and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment. PRACTITIONER POINTS: First stimulus task fMRI results in the spinal cord at 7 T. Single-shot 0.75 mm 2D EPI produced the highest mean z-statistic. Multi-shot 0.60 mm 2D EPI provided the best-localized activation and least distortion.


Subject(s)
Cervical Cord , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Cervical Cord/diagnostic imaging , Echo-Planar Imaging/methods , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Brain/diagnostic imaging , Brain/physiology
6.
Neurobiol Dis ; 193: 106437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367882

ABSTRACT

TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , TDP-43 Proteinopathies , Animals , Child, Preschool , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Cognition , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/pathology
7.
J Clin Densitom ; 27(1): 101459, 2024.
Article in English | MEDLINE | ID: mdl-38118352

ABSTRACT

BACKGROUND: To assess the current state of bone mineral density evaluation services via dual energy x-ray absorptiometry (DXA) provided to Veterans with fracture risk through the development and administration of a nationwide survey of facilities in the Veterans Health Administration. METHODOLOGY: The Bone Densitometry Survey was developed by convening a Work Group of individuals with expertise in bone densitometry and engaging the Work Group in an iterative drafting and revision process. Once completed, the survey was beta tested, administered through REDCap, and sent via e-mail to points of contact at 178 VHA facilities. RESULTS: Facility response rate was 31 % (56/178). Most DXA centers reported positively to markers of readiness for their bone densitometers: less than 10 years old (n=35; 63 %); in "excellent" or "good" condition (n=44; 78 %, 32 % and 46 %, respectively); and perform phantom calibration (n=43; 77 %). Forty-one DXA centers (73 %) use intake processes that have been shown to reduce errors. Thirty-seven DXA centers (66 %) reported their technologists receive specialized training in DXA, while 14 (25 %) indicated they receive accredited training. Seventeen DXA centers (30 %) reported performing routine precision assessment. CONCLUSIONS: Many DXA centers reported using practices that meet minimal standards for DXA reporting and preparation; however, the lack of standardization, even within an integrated healthcare system, indicates an opportunity for quality improvement to ensure consistent high quality bone mineral density evaluation of Veterans.


Subject(s)
Delivery of Health Care, Integrated , Fractures, Bone , Humans , Child , Bone Density , Absorptiometry, Photon , Calibration
8.
STAR Protoc ; 4(4): 102681, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37948184

ABSTRACT

Combining histology and ex vivo MRI from the same mouse brain is a powerful way to study brain microstructure. Mouse brains prepared for ex vivo MRI are often kept in storage solution for months, potentially becoming brittle and showing reduced antigenicity. Here, we describe a protocol for mouse brain dissection, tissue processing, paraffin embedding, sectioning, and staining. We then detail registration of histology to ex vivo MRI data from the same sample and extraction of quantitative histological measurements.


Subject(s)
Brain , Dissection , Mice , Animals , Paraffin Embedding , Brain/diagnostic imaging , Staining and Labeling , Magnetic Resonance Imaging/methods
9.
Dis Model Mech ; 16(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37772684

ABSTRACT

Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice , Animals , Amyotrophic Lateral Sclerosis/pathology , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Mutation/genetics , Neurons/metabolism
10.
Magn Reson Med ; 90(6): 2643-2652, 2023 12.
Article in English | MEDLINE | ID: mdl-37529979

ABSTRACT

PURPOSE: To develop a temperature-controlled cooling system to facilitate accurate quantitative post-mortem MRI and enable scanning of unfixed tissue. METHODS: A water cooling system was built and integrated with a 7T scanner to minimize temperature drift during MRI scans. The system was optimized for operational convenience and rapid deployment to ensure efficient workflow, which is critical for scanning unfixed post-mortem samples. The performance of the system was evaluated using a 7-h diffusion MRI protocol at 7T with a porcine tissue sample. Quantitative T1 , T2 , and ADC maps were interspersed with the diffusion scans at seven different time points to investigate the temperature dependence of MRI tissue parameters. The impact of temperature changes on biophysical model fitting of diffusion MRI data was investigated using simulation. RESULTS: Tissue T1 , T2 , and ADC values remained stable throughout the diffusion MRI scan using the developed cooling system, but varied substantially using a conventional scan setup without temperature control. The cooling system enabled accurate estimation of biophysical model parameters by stabilizing the tissue temperature throughout the diffusion scan, while the conventional setup showed evidence of significantly biased estimation. CONCLUSION: A temperature-controlled cooling system was developed to tackle the challenge of heating in post-mortem imaging, which shows potential to improve the accuracy and reliability of quantitative post-mortem imaging and enables long scans of unfixed tissue.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Swine , Animals , Temperature , Reproducibility of Results , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Autopsy
11.
Front Neuroinform ; 17: 1204186, 2023.
Article in English | MEDLINE | ID: mdl-37492242

ABSTRACT

Introduction: Cerebral microbleeds (CMBs) are associated with white matter damage, and various neurodegenerative and cerebrovascular diseases. CMBs occur as small, circular hypointense lesions on T2*-weighted gradient recalled echo (GRE) and susceptibility-weighted imaging (SWI) images, and hyperintense on quantitative susceptibility mapping (QSM) images due to their paramagnetic nature. Accurate automated detection of CMBs would help to determine quantitative imaging biomarkers (e.g., CMB count) on large datasets. In this work, we propose a fully automated, deep learning-based, 3-step algorithm, using structural and anatomical properties of CMBs from any single input image modality (e.g., GRE/SWI/QSM) for their accurate detections. Methods: In our method, the first step consists of an initial candidate detection step that detects CMBs with high sensitivity. In the second step, candidate discrimination step is performed using a knowledge distillation framework, with a multi-tasking teacher network that guides the student network to classify CMB and non-CMB instances in an offline manner. Finally, a morphological clean-up step further reduces false positives using anatomical constraints. We used four datasets consisting of different modalities specified above, acquired using various protocols and with a variety of pathological and demographic characteristics. Results: On cross-validation within datasets, our method achieved a cluster-wise true positive rate (TPR) of over 90% with an average of <2 false positives per subject. The knowledge distillation framework improves the cluster-wise TPR of the student model by 15%. Our method is flexible in terms of the input modality and provides comparable cluster-wise TPR and better cluster-wise precision compared to existing state-of-the-art methods. When evaluating across different datasets, our method showed good generalizability with a cluster-wise TPR >80 % with different modalities. The python implementation of the proposed method is openly available.

12.
Nat Commun ; 14(1): 4320, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468455

ABSTRACT

Understanding brain structure and function often requires combining data across different modalities and scales to link microscale cellular structures to macroscale features of whole brain organisation. Here we introduce the BigMac dataset, a resource combining in vivo MRI, extensive postmortem MRI and multi-contrast microscopy for multimodal characterisation of a single whole macaque brain. The data spans modalities (MRI and microscopy), tissue states (in vivo and postmortem), and four orders of spatial magnitude, from microscopy images with micrometre or sub-micrometre resolution, to MRI signals on the order of millimetres. Crucially, the MRI and microscopy images are carefully co-registered together to facilitate quantitative multimodal analyses. Here we detail the acquisition, curation, and first release of the data, that together make BigMac a unique, openly-disseminated resource available to researchers worldwide. Further, we demonstrate example analyses and opportunities afforded by the data, including improvement of connectivity estimates from ultra-high angular resolution diffusion MRI, neuroanatomical insight provided by polarised light imaging and myelin-stained histology, and the joint analysis of MRI and microscopy data for reconstruction of the microscopy-inspired connectome. All data and code are made openly available.


Subject(s)
Connectome , Macaca , Animals , Brain/diagnostic imaging , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging , Autopsy , Connectome/methods
13.
Elife ; 122023 07 03.
Article in English | MEDLINE | ID: mdl-37395453

ABSTRACT

A lab handbook is a flexible document that outlines the ethos of a research lab or group. A good handbook will outline the different roles within the lab, explain what is expected of all lab members, provide an overview of the culture the lab aims to create, and describe how the lab supports its members so that they can develop as researchers. Here we describe how we wrote a lab handbook for a large research group, and provide resources to help other labs write their own handbooks.


Subject(s)
Research Personnel , Writing , Humans
14.
Magn Reson Med ; 90(4): 1484-1501, 2023 10.
Article in English | MEDLINE | ID: mdl-37317708

ABSTRACT

PURPOSE: To develop a new method for high-fidelity, high-resolution 3D multi-slab diffusion MRI with minimal distortion and boundary slice aliasing. METHODS: Our method modifies 3D multi-slab imaging to integrate blip-reversed acquisitions for distortion correction and oversampling in the slice direction (kz ) for reducing boundary slice aliasing. Our aim is to achieve robust acceleration to keep the scan time the same as conventional 3D multi-slab acquisitions, in which data are acquired with a single direction of blip traversal and without kz -oversampling. We employ a two-stage reconstruction. In the first stage, the blip-up/down images are respectively reconstructed and analyzed to produce a field map for each diffusion direction. In the second stage, the blip-reversed data and the field map are incorporated into a joint reconstruction to produce images that are corrected for distortion and boundary slice aliasing. RESULTS: We conducted experiments at 7T in six healthy subjects. Stage 1 reconstruction produces images from highly under-sampled data (R = 7.2) with sufficient quality to provide accurate field map estimation. Stage 2 joint reconstruction substantially reduces distortion artifacts with comparable quality to fully-sampled blip-reversed results (2.4× scan time). Whole-brain in-vivo results acquired at 1.22 mm and 1.05 mm isotropic resolutions demonstrate improved anatomical fidelity compared to conventional 3D multi-slab imaging. Data demonstrate good reliability and reproducibility of the proposed method over multiple subjects. CONCLUSION: The proposed acquisition and reconstruction framework provide major reductions in distortion and boundary slice aliasing for 3D multi-slab diffusion MRI without increasing the scan time, which can potentially produce high-quality, high-resolution diffusion MRI.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging , Humans , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Artifacts , Acceleration , Image Processing, Computer-Assisted/methods , Echo-Planar Imaging/methods , Algorithms
15.
Front Syst Neurosci ; 17: 1134594, 2023.
Article in English | MEDLINE | ID: mdl-37008453

ABSTRACT

Introduction: 7,8-dihydroxyflavone (7,8-DHF) is a low molecular weight compound that can cross the blood brain barrier and has been implicated in numerous functions and behaviours. It is thought to have neuroprotective capability and has been shown to alleviate symptoms in a wide range of diseases. Methods: 7,8-DHF was administered systemically to wildtype mice during Morris water maze training. Long-term spatial memory was assessed 28 days later. Ex-vivo T2-weighted (T2w) imaging was undertaken on a subset of these mice to assess brain-wide changes in volume. Results: We found that systemic 7,8-DHF administration during the training period enhanced spatial memory 28 days later. Volumetric changes were observed in numerous brain regions associated with a broad range of functions including cognition, sensory, and motor processing. Discussion: Our findings give the first whole brain overview of long-term anatomical changes following 7,8-DHF administration providing valuable information for assessing and understanding the widespread effects this drug has been shown to have in behaviour and disease.

16.
Med Image Anal ; 86: 102744, 2023 05.
Article in English | MEDLINE | ID: mdl-36867912

ABSTRACT

Diffusion MRI is a useful neuroimaging tool for non-invasive mapping of human brain microstructure and structural connections. The analysis of diffusion MRI data often requires brain segmentation, including volumetric segmentation and cerebral cortical surfaces, from additional high-resolution T1-weighted (T1w) anatomical MRI data, which may be unacquired, corrupted by subject motion or hardware failure, or cannot be accurately co-registered to the diffusion data that are not corrected for susceptibility-induced geometric distortion. To address these challenges, this study proposes to synthesize high-quality T1w anatomical images directly from diffusion data using convolutional neural networks (CNNs) (entitled "DeepAnat"), including a U-Net and a hybrid generative adversarial network (GAN), and perform brain segmentation on synthesized T1w images or assist the co-registration using synthesized T1w images. The quantitative and systematic evaluations using data of 60 young subjects provided by the Human Connectome Project (HCP) show that the synthesized T1w images and results for brain segmentation and comprehensive diffusion analysis tasks are highly similar to those from native T1w data. The brain segmentation accuracy is slightly higher for the U-Net than the GAN. The efficacy of DeepAnat is further validated on a larger dataset of 300 more elderly subjects provided by the UK Biobank. Moreover, the U-Nets trained and validated on the HCP and UK Biobank data are shown to be highly generalizable to the diffusion data from Massachusetts General Hospital Connectome Diffusion Microstructure Dataset (MGH CDMD) acquired with different hardware systems and imaging protocols and therefore can be used directly without retraining or with fine-tuning for further improved performance. Finally, it is quantitatively demonstrated that the alignment between native T1w images and diffusion images uncorrected for geometric distortion assisted by synthesized T1w images substantially improves upon that by directly co-registering the diffusion and T1w images using the data of 20 subjects from MGH CDMD. In summary, our study demonstrates the benefits and practical feasibility of DeepAnat for assisting various diffusion MRI data analyses and supports its use in neuroscientific applications.


Subject(s)
Deep Learning , Humans , Aged , Image Processing, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Data Analysis
17.
PLoS One ; 18(3): e0282363, 2023.
Article in English | MEDLINE | ID: mdl-36947528

ABSTRACT

Telomeres form protective caps at the ends of chromosomes, and their attrition is a marker of biological aging. Short telomeres are associated with an increased risk of neurological and psychiatric disorders including dementia. The mechanism underlying this risk is unclear, and may involve brain structure and function. However, the relationship between telomere length and neuroimaging markers is poorly characterized. Here we show that leucocyte telomere length (LTL) is associated with multi-modal MRI phenotypes in 31,661 UK Biobank participants. Longer LTL is associated with: i) larger global and subcortical grey matter volumes including the hippocampus, ii) lower T1-weighted grey-white tissue contrast in sensory cortices, iii) white-matter microstructure measures in corpus callosum and association fibres, iv) lower volume of white matter hyperintensities, and v) lower basal ganglia iron. Longer LTL was protective against certain related clinical manifestations, namely all-cause dementia (HR 0.93, 95% CI: 0.91-0.96), but not stroke or Parkinson's disease. LTL is associated with multiple MRI endophenotypes of neurodegenerative disease, suggesting a pathway by which longer LTL may confer protective against dementia.


Subject(s)
Dementia , Neurodegenerative Diseases , Humans , Biological Specimen Banks , Brain/diagnostic imaging , Phenotype , Telomere/genetics , Neuroimaging , United Kingdom , Dementia/diagnostic imaging , Dementia/genetics , Leukocytes
18.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-36778391

ABSTRACT

PURPOSE: Although functional MRI is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0. Increasing field strength enables higher spatial resolution and improved sensitivity to BOLD signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first stimulus task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D EPI protocols, as they differ in sensitivity to spatial and temporal B0 inhomogeneity. METHODS: The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. For each protocol, the BOLD response to thirteen 10-second noxious thermal stimuli applied to the right thumb was acquired in a 10-minute fMRI run. Image quality, temporal SNR, and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. RESULTS: Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. CONCLUSION: Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment.

19.
Hum Brain Mapp ; 44(4): 1371-1388, 2023 03.
Article in English | MEDLINE | ID: mdl-36264194

ABSTRACT

Noninvasive diffusion magnetic resonance imaging (dMRI) has been widely employed in both clinical and research settings to investigate brain tissue microstructure. Despite the evidence that dMRI-derived fractional anisotropy (FA) correlates with white matter properties, the metric is not specific. Recent studies have reported that FA is dependent on the b-value, and its origin has primarily been attributed to either the influence of microstructure or the noise-floor effect. A systematic investigation into the inter-relationship of these two effects is however still lacking. This study aims to quantify contributions of the reported differences in intra- and extra-neurite diffusivity to the observed changes in FA, in addition to the noise in measurements. We used in-vivo and post-mortem human brain imaging, as well as numerical simulations and histological validation, for this purpose. Our investigations reveal that the percentage difference of FA between b-values (pdFA) has significant positive associations with neurite density index (NDI), which is derived from in-vivo neurite orientation dispersion and density imaging (NODDI), or Bielschowsky's silver impregnation (BIEL) staining sections of fixed post-mortem human brain samples. Furthermore, such an association is found to be varied with Signal-to-Noise Ratio (SNR) level, indicating a nonlinear interaction effect between tissue microstructure and noise. Finally, a multicompartment model simulation revealed that these findings can be driven by differing diffusivities of intra- and extra-neurite compartments in tissue, with the noise-floor further amplifying the effect. In conclusion, both the differences in intra- and extra-neurite diffusivity and noise-floor effects significantly contribute to the FA difference associated with the b-value.


Subject(s)
Diffusion Tensor Imaging , White Matter , Humans , Diffusion Tensor Imaging/methods , Anisotropy , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Neurites/pathology
20.
Neuroimage ; 265: 119792, 2023 01.
Article in English | MEDLINE | ID: mdl-36509214

ABSTRACT

BACKGROUND: Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data. METHODS: Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline. RESULTS: All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks. CONCLUSIONS: Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Neuroimaging , Histological Techniques/methods , Autopsy , Imaging, Three-Dimensional/methods
SELECTION OF CITATIONS
SEARCH DETAIL