Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microplast nanoplast ; 3(1): 17, 2023.
Article in English | MEDLINE | ID: mdl-37533492

ABSTRACT

Recent years have seen considerable scientific attention devoted towards documenting the presence of microplastics (MPs) in environmental samples. Due to omnipresence of environmental microplastics, however, disentangling environmental MPs from sample contamination is a challenge. Hence, the environmental (collection site and laboratory) microplastics contamination of samples during processing is a reality that we must address, in order to generate reproducible and reliable data. Here we investigated published literature and have found that around 1/5 of studies failed to use blank controls in their experiments. Additionally, only 34% of the studies used a controlled air environment for their sample processing (laminar flow, fume hood, closed laboratory, clean room, etc.). In that regard, we have also shown that preparing samples in the fume hood, leads to more microplastics > 1 µm) contamination than preparing it in the laboratory bench and the laminar flow. Although it did not completely prevent microplastics contamination, the processing of sample inside the laminar flow is the best option to reduce sample contamination during processing. Overall, we showed that blank controls are a must in microplastics sample preparation, but it is often overlooked by researchers. Supplementary Information: The online version contains supplementary material available at 10.1186/s43591-023-00065-3.

2.
Microplast nanoplast ; 3(1): 11, 2023.
Article in English | MEDLINE | ID: mdl-37228296

ABSTRACT

Plastic pollution is now so widespread that microplastics are regularly detected in biological samples surveyed for their presence. Despite their pervasiveness, very little is known about the effects of microplastics on the health of terrestrial vertebrates. While emerging studies are showing that microplastics represent a potentially serious threat to animal health, data have been limited to in vivo studies on laboratory rodents that were force fed plastics. The extent to which these studies are representative of the conditions that animals and humans might actually experience in the real world is largely unknown. Here, we review 114 papers from the peer-reviewed literature in order to understand how the concentrations and types of microplastics being administered to rodents in lab studies compare to those found in terrestrial soils. From 73 in vivo lab studies, and 41 soil studies, we found that lab studies have heretofore fed rodents microplastics at concentrations that were hundreds of thousands of times greater than they would be exposed to in nature. Furthermore, health effects have been studied for only 20% of the microplastic polymers that are known to occur in soils. Plastic pollution is arguably one of the most pressing ecological and public health issues of our time, yet existing lab-based research on the health effects of terrestrial microplastics does not reflect the conditions that free-ranging vertebrates are actually experiencing. Going forward, performing more true-to-life research will be of the utmost importance to fully understand the impacts of microplastics and maintain the public's faith in the scientific process. Supplementary Information: The online version contains supplementary material available at 10.1186/s43591-023-00059-1.

SELECTION OF CITATIONS
SEARCH DETAIL