ABSTRACT
The conversion of native vegetation to agricultural areas leads to a natural process of carbon loss but these systems can stabilize in terms of carbon dynamics depending on the management and conversion time, presenting potential to both store and stabilize this carbon in the soil, resulting in lower soil respiration rates. In this context, this study aimed to investigate the effect of converting native Cerrado forest areas to agricultural systems with a forest planted with Eucalyptus camaldulensis and silvopastoral systems on the dynamics of CO2 emission and carbon stock at different soil depths. The experimental sites are located in the Midwest of Brazil, in the coordinates 20°22'31â³ S and 51°24'12â³ W. Were evaluated soil CO2 emission (FCO2), soil organic carbon, the degree of humification of soil organic matter (HLIFS), soil temperature, soil moisture, and soil chemical and physical attributes. The soil of the area is classified as an Oxisol (Haplic Acrustox). Soil samples were collected at depths of 0.00-0.10, 0.10-0.20, 0.20-0.30, and 0.30-0.40 m. The lowest FCO2 values were found in the silvopastoral system (1.05 µmol m-2 s-1), followed by the native forest (1.65 µmol m-2 s-1) and the eucalyptus system (1.96 µmol m-2 s-1), indicating a 36% reduction in FCO2 compared to the conversion of the native forest to the silvopastoral system and an increase of 19% when converting the native forest to the eucalyptus system. The soil chemical attributes (N, K+, Ca2+, H++Al3+, CEC, and organic carbon) showed a decrease along the profile. The shallowest depths (0.00-0.10 and 0.10-0.20 m) presented no differences between systems but the subsequent depths (0.20-0.30 and 0.30-0.40 m) had a difference (95% confidence interval), relative to N, Ca2+, H++Al3, CEC, and organic carbon stock (OCS), and the soil under silvopastoral system showed a higher concentration of these attributes than the native forest. The multivariate analysis showed that the eucalyptus and silvopastoral systems did not differ from the forest in the shallowest soil layer but differed from each other. This behavior changed from the second assessed depth (0.10-0.20 m), in which the silvopastoral system stands out, differing both from the eucalyptus system and from the native forest, and this behavior is maintained at the following depths (0.20-0.30 and 0.30-0.40 m). OCS, H++Al3, CEC, and nitrogen are strongly related to land use change for silvopastoral system. Regarding the behavior/relationship of attributes as a function of depth, the silvopastoral system contributed to soil carbon accumulation and stability over consecutive years.
Subject(s)
Agriculture , Carbon Dioxide , Carbon , Forests , Soil , Soil/chemistry , Carbon/analysis , Carbon Dioxide/analysis , Brazil , EucalyptusABSTRACT
The use of Meliponini for crop pollination in protected environments is practically non-existent. One of the reasons is the difficulty of acclimatizing Meliponini to the temperature and light conditions inside greenhouses. We investigated how covering materials used in greenhouses, which filter different intensities of ultraviolet (UV) light, affect the foraging behaviors, flight orientation, attraction to walls and ceilings, and mortality of Scaptotrigona cf. postica (Letreille), Frieseomelitta varia (Lepeletier), and Melipona quadrifasciata (Lepeletier). The experiments were conducted in 5.3 m3 arenas covered with four types of plastic films that do not polarize sunlight, with UV transmittance levels ranging from 0.1 to 54%, compared to a transparent glass control. The temperature inside the arenas varied between treatments, from 27 ± 3°C to 31 ± 2°C. All three species collected resources and returned to the colony, regardless of the covering material. However, the proportion of this behavior, the number of bees attracted to the ceiling and wall, and mortality varied among treatments and/or throughout the confinement days for each species. Melipona quadrifasciata and F. varia acclimatized better to the confined environments than S. cf. postica and showed consistent resource collection behavior throughout the confinement days in all tested materials, except for the one that filtered around 90% of UV. In all three species, the mortality gradually decreased throughout the confinement days. The results indicate that the choice of covering material, considering its optical characteristics, can be crucial to ensure greater effectiveness of the pollination services provided by stingless bees in protected systems.
Subject(s)
Acclimatization , Ultraviolet Rays , Bees/physiology , Animals , Brazil , Temperature , Pollination , Feeding Behavior , Flight, AnimalABSTRACT
Soil carbon (C) determinations have been widely studied due to soil C sequestration that contributes to the mitigation of greenhouse gas emissions and improves soil quality. However, traditional chemical processes for large-scale analysis generate waste, are time-consuming, and have a high cost per measurement. Laser-induced breakdown spectroscopy (LIBS) is a multi-element spectroanalytical technique that allows fast and low-cost analysis, almost no sample preparation is required, and does not generate hazardous chemical waste. Two emission lines are commonly used for LIBS C determination, 193.03 and 247.85 nm. However, Brazilian soils have a high concentration of aluminum (Al) and iron (Fe), directly interfering in those C emission lines. Furthermore, multiple soil textures increase the difficulty of building calibration models due to matrix effects. In the present work, a mathematical model is proposed to quantify the total C in soil samples having different textures bypassing spectral interferences. A LIBS-specific method for removing outliers has been developed with 6% spectrum removal. From the univariate analysis, it was noticed that some results were projections of a 3D surface in a 2D space, so a 3D plane model was obtained with good fits for the evaluated C emission lines, R2 > 0.91, with limits of detection of 0.11% and 0.13% and limits of quantitation of 0.11% and 0.32% for lines 193.03 and 247.85 nm, respectively. Three repetitions were used to test the robustness of the methods and presented an R2 of 0.95 and 0.93, a mean error of about 20.38% and 24.12% for lines 193.03 and 247.85 nm, respectively, and a root mean square error of prediction lower than 0.40% for both lines.
Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/analysis , Lasers , Spectrum Analysis/methods , Iron/analysisABSTRACT
Laser-induced breakdown spectroscopy (LIBS) associated with machine learning algorithms (ML) was used to evaluate the Brachiaria seed physiological quality by discriminating the high and low vigor seeds. A 23 factorial design was used to optimize the LIBS experimental parameters for spectral analysis. A total of 120 samples from two distinct cultivars of Brachiaria brizantha seeds exhibiting high vigor (HV) and low vigor (LV) in standard tests were studied. The raw LIBS spectra were normalized and submitted to outlier verification, previously to the reduction data dimensionality from principal component analysis. Supervised machine learning algorithm parameters were chosen by leave-one-out cross-validation in the test samples, and it was tested by external validation using a new set of data. The overall accuracy in external validation achieved 100% for HV and LV discrimination, regardless of the cultivar or the classification algorithm.
Subject(s)
Brachiaria , Lasers , Machine Learning , Seeds , Spectrum Analysis/methodsABSTRACT
Gold nanoparticles (AuNPs) have shown interesting properties and specific biofunctions, providing benefits and new opportunities for controlled release systems. In this research, we demonstrated the use of natural rubber latex (NRL) from Hevea brasiliensis as a carrier of AuNPs and the antibiotic metronidazole (MET). We prepared AuNP-MET-NRL and characterized by physicochemical, biological and in vitro release assays. The effect of AuNPs on MET release was evaluated using UV-Vis and Laser-Induced Breakdown Spectroscopy (LIBS) techniques. AuNPs synthesized by Turkevich and Frens method resulted in a spherical shape with diameters of 34.8 ± 5.5 nm. We verified that there was no emergence or disappearance of new vibrational bands. Qualitatively and quantitatively, we showed that the MET crystals dispersed throughout the NRL. The Young's modulus and elongation values at dressing rupture were in the range appropriate for human skin application. 64.70% of the AuNP-MET complex was released within 100 h, exhibiting a second-order exponential release profile. The LIBS technique allowed monitoring of the AuNP release, indicating the Au emission peak reduction at 267.57 nm over time. Moreover, the dressing displayed an excellent hemocompatibility and fibroblast cell viability. These results demonstrated that the AuNP-MET-NRL wound dressing is a promising approach for dermal applications.
Subject(s)
Gold , Latex , Metal Nanoparticles , Metronidazole , Bandages , Gold/chemistry , Humans , Latex/chemistry , Metal Nanoparticles/chemistry , Metronidazole/pharmacology , Rubber/chemistryABSTRACT
This study aims to develop a single calibration model to determine nutrient elements directly (Ca, Mg, Mn, and P) in soybean and sugar cane leaf samples by double pulse laser-induced breakdown spectroscopy (DP LIBS). Matrix-matching calibration (MMC) was evaluated using direct and inverse models. Forty-five samples were used to build the calibration model (23 soybean leaves and 22 sugar cane leaves), and fifteen were used for the prediction test (8 soybean leaves and 7 sugar cane leaves) models. In the direct model, the analyte concentration in the sample is the independent variable, and the analytical signal is the dependent variable. In the inverse model, the analytical signal is the independent variable, and the analyte concentration in the sample is the dependent variable. In general, both models presented satisfactory results; however, the inverse model performed better. Emission lines used to propose calibration models were selected using a linear Pearson's correlation (R) strategy between each spectral point and the Ca, Mg, Mn, and P concentration measured by reference methods using inductively coupled plasma optical emission spectrometry (ICP OES). The root mean square errors of prediction (RMSEP) for the direct models were 0.60 g kg-1 to (Ca), 0.47 g kg-1 (Mg), 9.3 mg kg-1 to (Mn), and 0.28 g kg-1 to (P); for inverse model was 0.55 g kg-1 to (Ca), 0.39 g kg-1 (Mg), 10.5 mg kg-1 to (Mn), and 0.21 g kg-1 to (P). The calibration strategies proposed in this study may minimize matrix effects in direct solid analysis in soybean and sugar cane leaf samples, performing the determination of Ca, Mg, Mn, and P by DP LIBS using a single calibration model.
Subject(s)
Lasers , Nutrients , Calibration , Plant Leaves/chemistry , Plants , Spectrum Analysis/methodsABSTRACT
Intensive management of tropical pastures has shown potential for greenhouse gas (GHG) mitigation due to high forage production and C accumulation in the soil. This study aimed to evaluate different pasture management options in relation to their effect on soil C stocks and soil organic matter (SOM) humification. Pastures in four beef cattle production systems were assessed: intensive and irrigated pasture with high stocking rate (IHS); dryland pasture with high stocking rate (DHS); dryland pasture with moderate stocking rate (DMS); degraded pasture (DP). The soil under the native forest was also evaluated and soil carbon stocks from the 0-100 and 0-30 cm layers were assessed. Carbon stocks (0-100 cm) ranged from 99.88 to 142.33 Mg ha1 in DP and DMS, respectively and were, respectively, 14 % and 24 % higher compared to the soil under the forest and indicate the capacity of adequately managed tropical pastures to mitigate GHG emissions from livestock production. Humification indexes indicated the presence of more labile C in pastures with greater C accumulation (DHS and DMS), mainly in the upper soil layers, indicating recent C accumulation resulting from correct management. However, more labile C can be easily lost to the atmosphere as CO2, depending on pasture management. Low C stocks associated with high humification indexes are characteristics of DP in which significant amounts of SOM are lost. It is necessary to develop technologies to improve C sequestration in IHS and results indicate the importance of quantifying C stocks in association with C stability.
Subject(s)
Carbon , Ecosystem , Organic Matter , Pasture , Soil Chemistry , Spectrometry, FluorescenceABSTRACT
Intensive management of tropical pastures has shown potential for greenhouse gas (GHG) mitigation due to high forage production and C accumulation in the soil. This study aimed to evaluate different pasture management options in relation to their effect on soil C stocks and soil organic matter (SOM) humification. Pastures in four beef cattle production systems were assessed: intensive and irrigated pasture with high stocking rate (IHS); dryland pasture with high stocking rate (DHS); dryland pasture with moderate stocking rate (DMS); degraded pasture (DP). The soil under the native forest was also evaluated and soil carbon stocks from the 0-100 and 0-30 cm layers were assessed. Carbon stocks (0-100 cm) ranged from 99.88 to 142.33 Mg ha1 in DP and DMS, respectively and were, respectively, 14 % and 24 % higher compared to the soil under the forest and indicate the capacity of adequately managed tropical pastures to mitigate GHG emissions from livestock production. Humification indexes indicated the presence of more labile C in pastures with greater C accumulation (DHS and DMS), mainly in the upper soil layers, indicating recent C accumulation resulting from correct management. However, more labile C can be easily lost to the atmosphere as CO2, depending on pasture management. Low C stocks associated with high humification indexes are characteristics of DP in which significant amounts of SOM are lost. It is necessary to develop technologies to improve C sequestration in IHS and results indicate the importance of quantifying C stocks in association with C stability.(AU)
Subject(s)
Carbon , Soil Chemistry , Pasture , Organic Matter , Ecosystem , Spectrometry, FluorescenceABSTRACT
One of the most important factors that interfere negatively in coffee global quality has been blends with defective beans, especially those called Black, Immature and Sour (BIS). The methods based on visual-manual estimation of defective beans have shown their inefficiency in coffee value chain for large-scale analysis. The lack of fast, accurate and robust analytical methods for BIS determination is still a research gap. Laser-Induced Breakdown Spectroscopy (LIBS) is a fast, low-cost and residue-free technique capable of performing multielemental determination and investigating organic composition of samples. In the present work, LIBS together with spectral processing and variable selection were evaluated to fit linear regression models for predicting BIS in blends. Models showed high capacity of prediction with RMSEP smaller than 3.8% and R2 higher than 80%. Most importantly, measurements are guided by chemical responses, which make LIBS-based methods less susceptible to the visual indistinguishability that occurs in manual inspections.
Subject(s)
Coffea/chemistry , Coffee/chemistry , Food Quality , Lasers , Spectrum Analysis , ColorABSTRACT
Huanglongbing (HLB) and citrus variegated chlorosis (CVC) are serious threats to citrus production and have caused considerable economic losses worldwide, especially in Brazil, which is one of the biggest citrus producers in the world. Neither disease has a cure nor an efficient means of control. They are also generally confused with each other in the field since they share similar initial symptoms, e.g., yellowing blotchy leaves. The most efficient tool for detecting these diseases is by polymerase chain reaction (PCR). However, PCR is expensive, is not high throughput, and is subject to cross reaction and contamination. In this report, a diagnostic method is proposed for detecting HLB and CVC diseases in leaves of sweet orange trees using attenuated total reflectance Fourier transform infrared spectroscopy and the induced classifier via partial least-squares regression. Four different leaf types were considered: healthy, CVC-symptomatic, HLB-symptomatic, and HLB-asymptomatic. The results show a success rate of 93.8% in correctly identifying these different leaf types. In order to understand which compounds are responsible for the spectral differences between the leaf types, samples of carbohydrates starch, sucrose, and glucose, flavonoids hesperidin and naringin, and coumarin umbelliferone were also analyzed. The concentration of these compounds in leaves may vary due to biotic stresses.
Subject(s)
Citrus/microbiology , Plant Diseases , Spectrophotometry, Infrared/methods , Bacterial Infections/diagnosis , Brazil , Carbohydrates/analysis , Flavonoids/analysis , Plant Diseases/microbiology , Plant Leaves/microbiology , Spectrophotometry, Infrared/economics , Spectrophotometry, Infrared/standardsABSTRACT
Laser induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy technique for simple, direct and clean analysis, with great application potential in environmental sustainability studies. In a single LIBS spectrum it is possible to obtain qualitative information on the sample composition. However, quantitative analysis requires a reliable model for analytical calibration. Multilayer perceptron (MLP), an artificial neural network, is a multivariate technique that is capable of learning to recognize features from examples. Therefore MLP can be used as a calibration model for analytical determinations. Accordingly, the present study proposes to evaluate the traditional linear fit and MLP models for LIBS calibration, in order to attain a quantitative multielemental method for contaminant determination in soil under sewage sludge application. Two sets of samples, both composed of two kinds of soils were used for calibration and validation, respectively. The analyte concentrations in these samples, used as reference, were determined by a reference analytical method using inductively coupled plasma optical emission spectrometry (ICP OES). The LIBS-MLP was compared to a LIBS-linear fit method. The values determined by LIBS-MLP showed lower prediction errors, correlation above 98% with values determined by ICP OES, higher accuracy and precision, lower limits of detection and great application potential in the analysis of different kinds of soils.
Subject(s)
Lasers , Sewage/chemistry , Soil/chemistry , Spectrum Analysis/methods , Calibration , Environmental Monitoring/methods , Limit of DetectionABSTRACT
This study investigated the organic and inorganic constituents of healthy leaves and Candidatus Liberibacter asiaticus (CLas)-inoculated leaves of citrus plants. The bacteria CLas are one of the causal agents of citrus greening (or Huanglongbing) and its effect on citrus leaves was investigated using laser-induced breakdown spectroscopy (LIBS) combined with chemometrics. The information obtained from the LIBS spectra profiles with chemometrics analysis was promising for the construction of predictive models to identify healthy and infected plants. The major, macro- and microconstituents were relevant for differentiation of the sample conditions. The models were then applied to different inoculation times (from 1 to 8 months). The models were effective in the classification of 82-97% of the diseased samples with a 95% significance level. The novelty of this method was in the fingerprinting of healthy and diseased plants based on their organic and inorganic contents.
Subject(s)
Chemistry Techniques, Analytical , Citrus/microbiology , Plant Leaves/metabolism , Rhizobiaceae/metabolism , Spectrophotometry/methods , DNA/metabolism , Lasers , Light , Plant Diseases , Plant Physiological Phenomena , Reverse Transcriptase Polymerase Chain Reaction , Time FactorsABSTRACT
Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by 13C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence, and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching up to 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation of CO2, CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.