Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
ACS Appl Mater Interfaces ; 16(15): 18490-18502, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38573937

Evading recognition of immune cells is a well-known strategy of tumors used for their survival. One of the immune evasion mechanisms is the synthesis of kynurenine (KYN), a metabolite of tryptophan, which suppresses the effector T cells. Therefore, lowering the KYN concentration can be an efficient antitumor therapy by restoring the activity of immune cells. Recently, kynureninase (KYNase), which is an enzyme transforming KYN into anthranilate, was demonstrated to show the potential to decrease KYN concentration and inhibit tumor growth. However, due to the limited bioavailability and instability of proteins in vivo, it has been challenging to maintain the KYNase concentration sufficiently high in the tumor microenvironment (TME). Here, we developed a nanoparticle system loaded with KYNase, which formed a Biodegradable and Implantable Nanoparticle Depot named 'BIND' following subcutaneous injection. The BIND sustainably supplied KYNase around the TME while located around the tumor, until it eventually degraded and disappeared. As a result, the BIND system enhanced the proliferation and cytokine production of effector T cells in the TME, followed by tumor growth inhibition and increased mean survival. Finally, we showed that the BIND carrying KYNase significantly synergized with PD-1 blockade in three mouse models of colon cancer, breast cancer, and melanoma.


Hydrolases , Kynurenine , Melanoma , Mice , Animals , Kynurenine/metabolism , Tumor Escape , Immunotherapy , Tumor Microenvironment
2.
Mol Cell ; 84(6): 1158-1172.e6, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38447581

MicroRNA (miRNA) maturation is critically dependent on structural features of primary transcripts (pri-miRNAs). However, the scarcity of determined pri-miRNA structures has limited our understanding of miRNA maturation. Here, we employed selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP), a high-throughput RNA structure probing method, to unravel the secondary structures of 476 high-confidence human pri-miRNAs. Our SHAPE-based structures diverge substantially from those inferred solely from computation, particularly in the apical loop and basal segments, underlining the need for experimental data in RNA structure prediction. By comparing the structures with high-throughput processing data, we determined the optimal structural features of pri-miRNAs. The sequence determinants are influenced substantially by their structural contexts. Moreover, we identified an element termed the bulged GWG motif (bGWG) with a 3' bulge in the lower stem, which promotes processing. Our structure-function mapping better annotates the determinants of pri-miRNA processing and offers practical implications for designing small hairpin RNAs and predicting the impacts of miRNA mutations.


MicroRNAs , RNA Processing, Post-Transcriptional , Humans , MicroRNAs/metabolism , RNA, Small Interfering , Ribonuclease III/genetics
3.
RSC Adv ; 14(11): 7676-7683, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38444977

A strong and functional artificial nacre film is developed by using polyethyleneimine-functionalized GO (PEI-GO) and pyrogallol (PG) inspired by insect exoskeleton sclerotization. PEI-GO is macroscopically assembled into the laminated films and then reacted with PG under the optimized condition for their efficient cross-linking through Schiff-base reactions. The internal structure and physicochemical properties of PG-treated PEI-GO (PG@PEI-GO) films are systematically explored with various analytical tools. The optimized PG@PEI-GO films exhibit excellent tensile strength, modulus, and toughness of 216.0 ± 12.9 MPa, 17.0 ± 1.1 GPa, and 2192 ± 538.5 kJ m-3 which are 2.7, 2.8, and 2.3-fold higher than those of GO films, respectively. Furthermore, silver nanoparticles (AgNPs) are densely immobilized on the PG@PEI-GO films harnessing their abundant amine groups, and the AgNPs immobilized PG@PEI-GO films exhibit a high catalytic activity in the conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with maintaining structural integrity. Based on the results, we demonstrate that the rational design of interfaces, inspired by natural materials, is an efficient approach to achieving strong and functional GO laminated composite films.

4.
ACS Nano ; 17(17): 17554-17567, 2023 09 12.
Article En | MEDLINE | ID: mdl-37643221

Localized expression of immunomodulatory molecules can stimulate immune responses against tumors in the tumor microenvironment while avoiding toxicities associated with systemic administration. In this study, we developed a polyethylenimine-modified porous silica nanoparticle (PPSN)-based delivery platform carrying cytokine mRNA for local immunotherapy in vivo. Our delivery platform was significantly more efficient than FDA-approved lipid nanoparticles for localized mRNA translation. We observed no off-target translation of mRNA in any organs and no evidence of systemic toxicity. Intratumoral injection of cytokine mRNA-loaded PPSNs led to high-level expression of protein within the tumor and stimulated immunogenic cancer cell death. Additionally, combining cytokine mRNA with an immune checkpoint inhibitor enhanced anticancer responses in several murine cancer models and enabled the inhibition of distant metastatic tumors. Our results demonstrate the potential of PPSNs-mediated mRNA delivery as a specific, effective, and safe platform for mRNA-based therapeutics in cancer immunotherapy.


Interleukin-2 , Nanoparticles , Animals , Mice , Interleukin-2/genetics , Porosity , Cytokines , RNA, Messenger/genetics , Silicon Dioxide
5.
ACS Omega ; 8(32): 29113-29121, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37599943

Although messenger RNA (mRNA)-based therapeutics opened up new avenues for treating various diseases, intracellular delivery of mRNA is still challenging, especially to hard-to-transfect cells. For successful mRNA therapy, the development of a delivery vehicle that can effectively transport mRNA into cells is essential. In this study, we synthesized carbon nanodots (CNDs) as an efficient mRNA delivery vehicle via a one-step microwave-assisted method. CNDs easily formed complexes with mRNA molecules by electrostatic interactions, and the gene delivery performance of CNDs was highly effective in hard-to-transfect cells. Considering their outstanding transfection ability, CNDs are expected to be further applied for mRNA-based cellular engineering.

6.
J Mater Chem B ; 11(23): 5142-5150, 2023 06 14.
Article En | MEDLINE | ID: mdl-37248783

Silver nanoparticles (AgNPs) continue to be applied to agricultural and medical applications because of their antibacterial and antifungal effects. However, AgNPs are vulnerable to poisoning by oxidation or sulfidation, and unintentional toxicity can occur via leaching. Therefore, ensuring the stability of AgNPs for practical applications is considered an important requirement. In this study, we propose the solvothermal galvanic replacement of a Te nanorod (TeNR) template with a Ag precursor to manufacture highly stable and biocompatible Ag-Te nanoparticles (AgTeNPs). In addition to their high stability, AgTeNPs composed of Ag2Te-Ag4.53Te3 were evaluated as a nanotherapeutic agent enabled by their selective toxicity through metabolic degradation in breast cancer cells. It has been demonstrated that combinatorial treatment with hyperthermic cancer-cell ablation through photothermal conversion provides an effective cancer treatment in vitro and in vivo. The discovered new biocompatible Ag nanomaterials with innate anticancer effects are expected to be applied to various application fields.


Metal Nanoparticles , Nanostructures , Triple Negative Breast Neoplasms , Humans , Silver/pharmacology , Oxidation-Reduction
7.
Article En | MEDLINE | ID: mdl-36913611

Cancer vaccine is one of the immunotherapeutic strategies aiming to effectively deliver cancer antigens to professional antigen-presenting cells such as dendritic cells (DCs), macrophages, and B cells to elicit a cancer-specific immune response. Despite the advantages of the cancer vaccine that can be applied to various cancer types, the clinical approach is limited due to the non-specific or adverse immune responses, stability, and safety issues. In this study, we report an injectable nanovaccine platform based on large-sized (∼350 nm) porous silica nanoparticles (PSNs). We found that large-sized PSNs, called PS3, facilitated the formation of an antigen supply depot at the site of injection so that a single injection of PSN-based nanovaccine elicited sufficient tumor-specific cell-mediated and humoral immune response. As a result, antigen-loaded PS3 induced successful tumor regression in prophylactic and therapeutic vaccination.

8.
Acta Biomater ; 165: 153-167, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-36243378

Tumor angiogenesis is regarded as a promising target for limiting cancer progression because tumor-associated vasculature supplies blood and provides a path for metastasis. Thus, in vitro recapitulation of vascularized tumors is critical to understand the pathology of cancer and identify the mechanisms by which tumor cells proliferate, metastasize, and respond to drugs. In this study, we microengineered a vascularized tumor spheroid (VTS) model to reproduce the pathological features of solid tumors. We first generated tumor-EC hybrid spheroids with self-assembled intratumoral vessels, which enhanced the uniformity of the spheroids and peritumoral angiogenic capacity compared to spheroids composed only with cancer cells. Notably, the hybrid spheroids also exhibited expression profiles associated with aggressive behavior. The blood vessels sprouting around the hybrid spheroids on the VTS chip displayed the distinctive characteristics of leaky tumor vessels. With the VTS chip showing a progressive tumor phenotype, we validated the suppressive effects of axitinib on tumor growth and angiogenesis, which depended on exposure dose and time, highlighting the significance of tumor vascularization to predict the efficacy of anticancer drugs. Ultimately, we effectively induced both lymphangiogenesis and angiogenesis around the tumor spheroid by promoting interstitial flow. Thus, our VTS model is a valuable platform with which to investigate the interactions between tumor microenvironments and explore therapeutic strategies in cancer. STATEMENT OF SIGNIFICANCE: We conducted an integrative study within a vascularized tumor spheroid (VTS) model. We first generated tumor-EC hybrid spheroids with self-assembled intratumoral vessels, which enhanced the uniformity of the spheroids and peritumoral angiogenic capacity compared to spheroids composed only with cancer cells. Through RNA sequencing, we elucidated that the tumor-EC hybrid spheroids exhibited expression profiles associated with aggressive behavior such as cancer progression, invasion and metastasis. The blood vessels sprouting around the hybrid spheroids on the VTS chip displayed the distinctive characteristics of leaky tumor vessels. We further validated the suppressive effects of axitinib on tumor growth and angiogenesis, depending on exposure dose and time. Ultimately, we effectively induced both lymphangiogenesis and angiogenesis around the tumor spheroid by promoting interstitial flow.


Antineoplastic Agents , Neoplasms , Humans , Spheroids, Cellular/pathology , Axitinib/pharmacology , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Tumor Microenvironment
9.
ACS Appl Mater Interfaces ; 14(36): 40513-40521, 2022 Sep 14.
Article En | MEDLINE | ID: mdl-36049895

Rh is a noble metal introduced in bioapplications, including diagnosis and therapy, in addition to its consolidated utilization in organic catalysis and electrocatalysis. Herein, we designed the synthesis of highly crystalline Rh nanocrystal-decorated Rh-Te nanorods (RhTeNRs) through galvanic replacement of sacrificial Te nanorod (TeNR) templates and subsequent polyol regrowth. The obtained RhTeNRs showed excellent colloidal stability and efficient heat dissipation and photocatalytic activity under various laser irradiation wavelengths. Based on the confirmed biocompatibility, RhTeNRs were introduced into in vitro and in vivo cancer phototherapies. The results confirmed the selective physical death of cancer cells in the local area through laser irradiation. While chemotherapy does not guarantee successful treatment due to side effects and resistance, phototherapy using heat and reactive oxygen species generation of RhTeNRs induces physical death.


Nanotubes , Neoplasms , Rhodium , Animals , Mice , Mice, Inbred BALB C , Nanotubes/chemistry , Neoplasms/therapy , Phototherapy , Polymers , Tellurium
10.
Nat Commun ; 13(1): 4568, 2022 08 05.
Article En | MEDLINE | ID: mdl-35931667

Artificial, synthetic chaperones have attracted much attention in biomedical research due to their ability to control the folding of proteins and peptides. Here, we report bio-inspired multifunctional porous nanoparticles to modulate proper folding and intracellular delivery of therapeutic α-helical peptide. The Synthetic Nano-Chaperone for Peptide (SNCP) based on porous nanoparticles provides an internal hydrophobic environment which contributes in stabilizing secondary structure of encapsulated α-helical peptides due to the hydrophobic internal environments. In addition, SNCP with optimized inner surface modification not only improves thermal stability for α-helical peptide but also supports the peptide stapling methods in situ, serving as a nanoreactor. Then, SNCP subsequently delivers the stabilized therapeutic α-helical peptides into cancer cells, resulting in high therapeutic efficacy. SNCP improves cellular uptake and bioavailability of the anti-cancer peptide, so the cancer growth is effectively inhibited in vivo. These data indicate that the bio-inspired SNCP system combining nanoreactor and delivery carrier could provide a strategy to expedite the development of peptide therapeutics by overcoming existing drawbacks of α-helical peptides as drug candidates.


Molecular Chaperones , Peptides , Amino Acid Sequence , Molecular Chaperones/metabolism , Peptides/chemistry , Protein Conformation, alpha-Helical , Protein Folding , Protein Structure, Secondary
11.
J Control Release ; 345: 108-119, 2022 05.
Article En | MEDLINE | ID: mdl-35247491

Programmable endonucleases such as CRISPR/Cas9 system emerge as a promising tool to treat genetic and non-genetic diseases such as hypercholesterolemia, Duchenne muscular dystrophy, and cancer. However, the lack of safe and efficient vehicles that enable intracellular delivery of CRISPR/Cas9 endonuclease is a big hurdle for its therapeutic applications. Here, we employed porous nanoparticle for the Cas9 ribonucleoprotein (RNP) delivery and achieved efficient knockout of target genes in vitro and in vivo. The porous nanoparticle, called 'BALL', enabled safe and direct intracellular Cas9 RNP delivery by improving bioavailability and serum stability. The BALL-mediated delivery of Cas9 RNP showed superior indel efficiency of about 40% in vitro and 20% in vivo in a model system employing green fluorescent protein (GFP). More importantly, intramuscular injection of the Cas9 RNP-BALL complex targeting the myostatin (MSTN) gene which is known to suppress muscle growth achieved successful knockout of the MSTN gene, resulting in the increase of muscle and the improved motor functions. Thus, we believe that the BALL is a promising delivery system for CRISPR-based genome editing technology, which can be applied to the treatment of various genetic diseases.


Gene Editing , Nanoparticles , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Editing/methods , Ribonucleoproteins/genetics
12.
ACS Appl Mater Interfaces ; 14(8): 9987-10000, 2022 Mar 02.
Article En | MEDLINE | ID: mdl-35176852

Chemical reactions between homogeneous precursors are typically used to synthesize monodisperse nanoparticles with well-controlled size and morphology. It is difficult to predict the evolved nanostructures when using two heterogeneous precursors. In this study, three types of Mo-Te nanoparticles shaped like leaves, spindles, and rice grains (denoted respectively as nanoleaf, nanospindle, and nanorice) were obtained from dextrose-mediated proton-coupled electron transfer reaction between the solid polyoxomolybdate (POM) and the ionic tellurite anion as precursors. All produced nanoparticles had excellent optical absorption in the ultraviolet(UV)-visible(Vis)-near-infrared(NIR) regions, with only slight deviations among them. After confirming nanoparticles' photothermal conversion and photocatalytic activity at multiple wavelengths, the Mo-Te nanorice was tested as a potential agent for cancer treatment due to its minimum toxicity, excellent colloidal stability, and intrinsic anticancer effect. Excellent treatment efficacy and clearance were confirmed in vitro and in vivo. Due to their photoacoustic imaging capability, the injection of pristine nanoparticles could also realize phototheranostics without using additional drugs, probes, or photosensitizers.


Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Photoacoustic Techniques/methods , Phototherapy , Precision Medicine , Theranostic Nanomedicine
13.
Nanoscale ; 14(4): 1409-1420, 2022 Jan 27.
Article En | MEDLINE | ID: mdl-35018402

In advanced galvanic replacement, variable factors such as the combination of two elements where actual redox reaction and post-synthetic structural transformation take place. Research on manufacturing distinctive nanostructures has mainly focused on the shape of the sacrificial nanotemplate, the presence or absence of additives, and the reaction temperature. Here, we have attempted to confirm the dependency on the solvent, which was considered to simply serve as a medium for a homogeneous chemical reaction to proceed by aiding the dispersion of the nanotemplate and reactants. Thus, we obtained mushroom-like Au nanoplates (mAuNPs) by comprehensive galvanic replacement reaction between solvents, additives, and adsorbents. The mAuNPs with a porous Au nanoplate head and a hollow nanotube tail structure were formed via an optimization process in a 50 v/v% solvent comprising water and ethylene glycol. As a result of confirming the galvanic replacement in co-solvent conditions, in which various types of water miscible solvents were introduced, it was revealed that the most critical factors for regulating the surface polymeric environment of the nanoplate were the relative polarity index of the co-solvent and the hydrogen bonding type. These depend on the molecular structure of the solvent. The manufactured mAuNPs exhibited excellent absorbance in the near-infrared region, and efficient photothermal (PT) conversion-mediated heat dissipation under local laser irradiation. These results confirm the viability of the gene-thermo dual-modal combinatorial cancer therapy based on the surface loading of oligonucleotides and peptides, and the PT therapeutic approach in vitro and in vivo.


Metal Nanoparticles , Neoplasms , Gold , Humans , Porosity , Solvents
14.
Biomaterials ; 280: 121257, 2022 01.
Article En | MEDLINE | ID: mdl-34839122

Recent strategies in cancer immunotherapy based on interleukin-2 (IL-2) are generally focused on reducing regulatory T cell (Treg) development by modifying IL-2 receptor alpha (IL-2Rα) domain. However, the clinical utility of high-dose IL-2 treatment is mainly limited by severe systemic toxicity. We find that peritumorally injectable 'BALLkine-2', recombinant human IL-2 (rIL-2) loaded porous nanoparticle, dramatically reduces systemic side effects of rIL-2 by minimizing systemic IL-2 exposure. Notably, in cynomolgus monkeys, subcutaneous (SC)-injection of BALLkine-2 not only dramatically reduces systemic circulation of rIL-2 in the blood, but also increases half-life of IL-2 compared to IV- or SC-injection of free rIL-2. Peritumorally-injected BALLkine-2 enhances intratumoral lymphocyte infiltration without inducing Treg development and more effectively synergizes with PD-1 blockade than high-dose rIL-2 administration in B16F10 melanoma model. BALLkine-2 could be a highly potent therapeutic option due to higher anti-tumor efficacy with lower and fewer doses and reduced systemic toxicity compared to systemic rIL-2.


Melanoma , Nanoparticles , Humans , Immunotherapy , Interleukin-2/therapeutic use , Melanoma/drug therapy , Recombinant Proteins/therapeutic use , T-Lymphocytes, Regulatory
15.
Chem Commun (Camb) ; 57(77): 9820-9833, 2021 Sep 28.
Article En | MEDLINE | ID: mdl-34494621

Graphene oxide (GO), an oxidized derivative of graphene, has received much attention for developing novel fluorescent bioanalytic platforms due to its remarkable optical properties and biocompatibility. The reliable performance and robustness of GO-based biosensors have enabled various applications in the biomedical field including diagnosis and drug discovery. Here, recent advances in the development of GO-based fluorescent biosensors are overviewed, particularly nucleic acid detection and enzyme activity assay. In addition, practical applications in biomarker detection and high-throughput screening are also examined. Lastly, basic design principles and remaining challenges of these types of biosensors are discussed for further progress.


Biosensing Techniques , Drug Discovery , Fluorescent Dyes/chemistry , Graphite/chemistry , Biomarkers/analysis , Fluorescent Dyes/chemical synthesis , Graphite/chemical synthesis , Humans , Molecular Structure
16.
ACS Appl Mater Interfaces ; 13(37): 44124-44135, 2021 Sep 22.
Article En | MEDLINE | ID: mdl-34495627

Although nanoparticles based on Group 8 elements such as Fe and Ru have been developed, not much is known about Os nanoparticles. However, Os-based nanostructures might have potential in various applications including biomedical fields. Therefore, in this study, we synthesized Os-Te nanorods (OsTeNRs) by solvothermal galvanic replacement with Te nanotemplates. We explored the nanozymatic activity of the synthesized OsTeNRs and found that they exhibited superior photothermal conversion and photocatalytic activity. Along with chemotherapy (regorafenib) and immunotherapy, the nanozymatic, photothermal, and photodynamic activities of OsTeNRs were harnessed to develop a pentamodal treatment for hepatocellular carcinoma (HCC); in vitro and in vivo studies demonstrated that the pentamodal therapy could alleviate hypoxia in HCC cells by generating oxygen and reduced unintended drug accumulation in organs. Moreover, bone-marrow toxicity due to regorafenib could be reduced as the drug was released in a sustained manner. Thus, OsTeNRs can be considered as suitable nanotemplates for combinatorial cancer therapy.


Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Drug Carriers/chemistry , Liver Neoplasms/drug therapy , Nanotubes/chemistry , Animals , Catalysis , Cell Line, Tumor , Drug Carriers/chemical synthesis , Drug Carriers/radiation effects , Male , Mice, Inbred C57BL , Nanotubes/radiation effects , Osmium/chemistry , Osmium/radiation effects , Phenylurea Compounds/therapeutic use , Photochemotherapy , Pyridines/therapeutic use , Tellurium/chemistry , Tellurium/radiation effects , Xenograft Model Antitumor Assays
17.
ACS Appl Mater Interfaces ; 13(22): 25715-25726, 2021 Jun 09.
Article En | MEDLINE | ID: mdl-34036784

Dengue virus (DENV), an arbovirus transmitted by mosquitoes, causes infectious diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Despite the dangers posed by DENV, there are no approved antiviral drugs for treatment of DENV infection. Considering the potential for a global dengue outbreak, rapid development of antiviral agents against DENV infections is crucial as a preemptive measure; thus, the selection of apparent drug targets, such as the viral enzymes involved in the viral life cycle, is recommended. Helicase, a potential drug target in DENV, is a crucial viral enzyme that unwinds double-stranded viral RNA, releasing single-stranded RNA genomes during viral replication. Therefore, an inhibitor of helicase activity could serve as a direct-acting antiviral agent. Here, we introduce an RNA helicase assay based on graphene oxide, which enables fluorescence-based analysis of RNA substrate-specific helicase enzyme activity. This assay demonstrated high reliability and ability for high-throughput screening, identifying a new helicase inhibitor candidate, micafungin (MCFG), from an FDA-approved drug library. As a direct-acting antiviral agent targeting RNA helicase, MCFG inhibits DENV proliferation in cells and an animal model. Notably, in vivo, MCFG treatment reduced viremia, inflammatory cytokine levels, and viral loads in several tissues and improved survival rates by up to 40% in a lethal mouse model. Therefore, we suggest MCFG as a potential direct-acting antiviral drug candidate.


Antiviral Agents/pharmacology , Biosensing Techniques/methods , Dengue Virus/drug effects , Dengue/drug therapy , Graphite/chemistry , Micafungin/pharmacology , RNA Helicases/antagonists & inhibitors , Animals , Antifungal Agents/pharmacology , Antiviral Agents/chemistry , Dengue/enzymology , Dengue/virology , Dengue Virus/enzymology , High-Throughput Screening Assays/methods , Mice , Nanoparticles/chemistry , Virus Replication
18.
Biosens Bioelectron ; 183: 113208, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33839535

Currently, there are no approved therapeutics for Dengue virus (DENV) infection, even though it can cause fatal complications. Understanding DENV infection and its propagation process in host cells is necessary to develop specific antiviral therapeutics. Here, we developed a graphene oxide-based fluorescent system (Graphene Oxide-based Viral RNA Analysis system, GOViRA) that enables sensitive and quantitative real-time monitoring of the intracellular viral RNA level in living cells. The GOViRA system consists of a fluorescent dye-labeled peptide nucleic acid (PNA) with a complementary sequence to the DENV genome and a dextran-coated reduced graphene oxide nanocolloid (DRGON). When the dye labeled PNA is adsorbed onto DRGON, the fluorescence of the dye is effectively quenched. The quenched fluorescence signal is recovered when the dye labeled PNA forms interaction with intracellular viral RNA in DENV infected host cells. We demonstrated the successful use of the GOViRA platform for high-throughput screening to discover novel antiviral compounds. Through a cell-based high-throughput screening of FDA-approved small-molecule drugs, we identified ulipristal, a selective progesterone receptor modulator (SPRM), as a potent inhibitor against DENV infection. The anti-DENV activity of ulipristal was confirmed both in vitro and in vivo. Moreover, we suggest that the mode of action of ulipristal is mediated by inhibiting viral entry into the host cells.


Biosensing Techniques , Dengue Virus , Dengue , Antiviral Agents/pharmacology , Drug Repositioning , Graphite , Humans , Virus Replication
19.
ACS Sens ; 6(3): 815-822, 2021 03 26.
Article En | MEDLINE | ID: mdl-33529521

A human cytomegalovirus (HCMV) causes a persistent asymptomatic infection in healthy individuals and possesses unexpected dangers to newborn babies, immunocompromised people, and organ transplant recipients because of stealth transmission. Thus, an early and accurate diagnosis of HCMV infection is crucial for prevention of unexpected transmission and progression of the severe diseases. The standard method of HCMV diagnosis depends on serology, antigen test, and polymerase chain reaction-based nucleic acid detection, which have advantages for each target molecule. However, the serological test for an antibody is an indirect method assuming the past virus infection, and antigen and viral nucleic acid testing demand laborious, complex multistep procedures for direct virus detection. Herein, we present an alternative simple and facile fluorometric biosensor composed of a graphene oxide nanocolloid and fluorescent peptide nucleic acid (PNA) probe to detect the HCMV infection by simply monitoring the virally encoded microRNA as a new biomarker of lytic virus infection. We verify the sensing of HCMV-derived microRNA accumulated within 72 h after HCMV infection and examine the diagnosis of HCMV in living cells. We proceed with the time course and concentration-dependent investigation of hcmv-miRNA sensing in living cells as a direct method of HCMV detection at the molecular level on the basis of an intracellular hcmv-miRNA expression profile and graphene oxide nanocolloid-based simple diagnostic platform. The fluorometric biosensor enables the sequence-specific binding to the target HCMV miRNAs in HCMV-infected fibroblasts and shows the quantitative detection capability of HCMV infection to be as low as 4.15 × 105 immunofluorescence focus unit (IFU)/mL of the virus titer at 48 h post-infection with picomolar sensitivity for HCMV miRNA.


Cytomegalovirus Infections , MicroRNAs , Cytomegalovirus/genetics , Cytomegalovirus Infections/diagnosis , Humans , Infant , Infant, Newborn , MicroRNAs/genetics , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction
20.
ACS Nano ; 15(1): 338-350, 2021 01 26.
Article En | MEDLINE | ID: mdl-33231435

Three-dimensional (3D) visualization of tumor vasculature is a key factor in accurate evaluation of RNA interference (RNAi)-based antiangiogenic nanomedicine, a promising approach for cancer therapeutics. However, this remains challenging because there is not a physiologically relevant in vitro model or precise analytic methodology. To address this limitation, a strategy based on 3D microfluidic angiogenesis-on-a-chip and 3D tumor vascular mapping was developed for evaluating RNAi-based antiangiogenic nanomedicine. We developed a microfluidic model to recapitulate functional 3D angiogenic sprouting when co-cultured with various cancer cell types. This model enabled efficient and rapid assessment of antiangiogenic nanomedicine in treatment of hyper-angiogenic cancer. In addition, tissue-clearing-based whole vascular mapping of tumor xenograft allowed extraction of complex 3D morphological information in diverse quantitative parameters. Using this 3D imaging-based analysis, we observed tumor sub-regional differences in the antiangiogenic effect. Our systematic strategy can help in narrowing down the promising targets of antiangiogenic nanomedicine and then enables deep analysis of complex morphological changes in tumor vasculature, providing a powerful platform for the development of safe and effective nanomedicine for cancer therapeutics.


Nanomedicine , Neoplasms , Humans , Microfluidics , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/drug therapy , RNA Interference
...