Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 270: 116119, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33261970

ABSTRACT

It is challenging to retrieve hourly ground-level PM2.5 on a national scale in China due to the sparse site measurements and the limited coverage of Low Earth Orbit (LEO) satellite observations. The new geostationary meteorological satellite of China, Fengyun-4A (FY-4A), provides a unique opportunity to fill this gap. In this study, the Random Forest (RF) algorithm was applied to retrieve hourly PM2.5 of China directly from FY-4A Top-of-Atmosphere (TOA) reflectance data. A one-year PM2.5 retrieval shows a strong agreement to ground-based measurements, with the averaged R2 approaching 0.92, while the RMSE was only 10.0 µg/m³. An analysis of the regional differences of the performance and the dependency on satellite Viewing Zenith Angle (VZA) show that sparse measurements, high VZA, and solar zenith angle (SZA) are the primary sources of the uncertainty. The use of the FY-4A improved 17% spatial coverage compared to the Himawari-8-based PM2.5 retrievals, enabling full-coverage, hourly PM2.5 monitoring over China, and potentially could improve PM2.5 predictions from air quality models after data assimilation.


Subject(s)
Air Pollutants , Air Pollution , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Atmosphere , China , Environmental Monitoring , Particulate Matter/analysis
2.
Environ Pollut ; 263(Pt A): 114451, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32244160

ABSTRACT

The new-generation geostationary satellites feature higher radiometric, spectral, and spatial resolutions, thereby making richer data available for the improvement of PM2.5 predictions. Various aerosol optical depth (AOD) data assimilation methods have been developed, but the accurate representation of the AOD-PM2.5 relationship remains challenging. Empirical statistical methods are effective in retrieving ground-level PM2.5, but few have been evaluated in terms of whether and to what extent they can help improve PM2.5 predictions. Therefore, an empirical and statistics-based scheme was developed for optimizing the estimation of the initial conditions (ICs) of aerosol in WRF-Chem (Weather Research and Forecasting/Chemistry) and for improving the PM2.5 predictions by integrating Himawari-8 data and ground observations. The proposed method was evaluated via two one-year experiments that were conducted in parallel over eastern China. The contribution of the satellite data to the model performance was evaluated via a 2-week control experiment. The results demonstrate that the proposed method improved the PM2.5 predictions throughout the year and mitigated the underestimation during pollution episodes. Spatially, the performance was highly correlated with the amount of valid data.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Aerosols/analysis , China , Environmental Monitoring
3.
iScience ; 23(3): 100893, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32088395

ABSTRACT

By investigating the long-term observations at Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP), we find that the routinely used Beer-Bouguer-Lambert law and the models that empirically separate direct normal irradiance (DNI) from measurements of global horizontal irradiance (GHI) have dramatic and unexpected bias in computing cloudy-sky DNI. This bias has led to tremendous uncertainty in estimating the electricity generation by solar energy conversion systems. To effectively reduce the bias, this study proposes a physical solution of all-sky DNI that computes solar radiation in the infinite-narrow beam along the sun direction and the scattered radiation falls within the circumsolar region. In sharp contrast with the other DNI models, this method uses a finite-surface integration algorithm that computes solar radiation in differential solid angles and efficiently infers its contribution to a surface perpendicular to the sun direction. The new model substantially reduces the uncertainty in DNI by a factor of 2-7.

4.
Atmos Meas Tech ; 12(3): 2019-2031, 2019.
Article in English | MEDLINE | ID: mdl-31921373

ABSTRACT

This paper presents the physical basis of the EPIC cloud product algorithms and an initial evaluation of their performance. Since June 2015, EPIC has been providing observations of the sunlit side of the Earth with its 10 spectral channels ranging from the UV to the near-IR. A suite of algorithms has been developed to generate the standard EPIC Level 2 Cloud Products that include cloud mask, cloud effective pressure/height, and cloud optical thickness. The EPIC cloud mask adopts the threshold method and utilizes multichannel observations and ratios as tests. Cloud effective pressure/height is derived with observations from the O2 A-band (780 nm and 764 nm), and B-band (680 nm and 688 nm) pairs. The EPIC cloud optical thickness retrieval adopts a single channel approach where the 780 nm and 680 nm channels are used for retrievals over ocean and over land, respectively. Comparison with co-located cloud retrievals from geosynchronous earth orbit (GEO) and low earth orbit (LEO) satellites shows that the EPIC cloud product algorithms are performing well and are consistent with theoretical expectations. These products are publicly available at the Atmospheric Science Data Center at the NASA Langley Research Center for climate studies and for generating other geophysical products that require cloud properties as input.

5.
Sci Rep ; 7(1): 13826, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29061971

ABSTRACT

Mineral dust is the most important natural source of atmospheric ice nuclei (IN) which may significantly mediate the properties of ice cloud through heterogeneous nucleation and lead to crucial impacts on hydrological and energy cycle. The potential dust IN effect on cloud top temperature (CTT) in a well-developed mesoscale convective system (MCS) was studied using both satellite observations and cloud resolving model (CRM) simulations. We combined satellite observations from passive spectrometer, active cloud radar, lidar, and wind field simulations from CRM to identify the place where ice cloud mixed with dust particles. For given ice water path, the CTT of dust-mixed cloud is warmer than that in relatively pristine cloud. The probability distribution function (PDF) of CTT for dust-mixed clouds shifted to the warmer end and showed two peaks at about -45 °C and -25 °C. The PDF for relatively pristine cloud only show one peak at -55 °C. Cloud simulations with different microphysical schemes agreed well with each other and showed better agreement with satellite observations in pristine clouds, but they showed large discrepancies in dust-mixed clouds. Some microphysical schemes failed to predict the warm peak of CTT related to heterogeneous ice formation.

6.
Opt Express ; 23(24): A1589-602, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698806

ABSTRACT

Layer boundary (base and top) detection is a basic problem in lidar data processing, the results of which are used as inputs of optical properties retrieval. However, traditional algorithms not only require manual intervention but also rely heavily on the signal-to-noise ratio. Therefore, we propose a robust and automatic algorithm for layer detection based on a novel algorithm for lidar signal segmentation and representation. Our algorithm is based on the lidar equation and avoids most of the limitations of the traditional algorithms. Testing of the simulated and real signals shows that the algorithm is able to position the base and top accurately even with a low signal to noise ratio. Furthermore, the results of the classification are accurate and satisfactory. The experimental results confirm that our algorithm can be used for automatic detection, retrieval, and analysis of lidar data sets.

7.
Opt Express ; 23(20): 26509-20, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26480164

ABSTRACT

The signal-to-noise ratio (SNR) of an atmospheric lidar decreases rapidly as range increases, so that maintaining high accuracy when retrieving lidar data at the far end is difficult. To avoid this problem, many de-noising algorithms have been developed; in particular, an effective de-noising algorithm has been proposed to simultaneously retrieve lidar data and obtain a de-noised signal by combining the ensemble Kalman filter (EnKF) and the Fernald method. This algorithm enhances the retrieval accuracy and effective measure range of a lidar based on the Fernald method, but sometimes leads to a shift (bias) in the near range as a result of the over-smoothing caused by the EnKF. This study proposes a new scheme that avoids this phenomenon using a particle filter (PF) instead of the EnKF in the de-noising algorithm. Synthetic experiments show that the PF performs better than the EnKF and Fernald methods. The root mean square error of PF are 52.55% and 38.14% of that of the Fernald and EnKF methods, and PF increases the SNR by 44.36% and 11.57% of that of the Fernald and EnKF methods, respectively. For experiments with real signals, the relative bias of the EnKF is 5.72%, which is reduced to 2.15% by the PF in the near range. Furthermore, the suppression impact on the random noise in the far range is also made significant via the PF. An extensive application of the PF method can be useful in determining the local and global properties of aerosols.

8.
Opt Express ; 23(11): A604-13, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072885

ABSTRACT

Fernald method is regarded as the standard method for retrieving lidar data, but the retrieval can be performed only when a boundary value is given. Generally, we can select clear atmosphere above the tropopause as a reference to determine the boundary value, but we need to use the slope method to fit the boundary value when the detecting range is lower than the tropopause. The slope method involves significant uncertainty because this algorithm is based on two hypotheses: one is that aerosol vertical distribution is homogeneous, and the other is that either molecule or aerosol components exist in the atmosphere. To reduce the uncertainty, we proposed a new approach, which segments a signal into "uniform" sub-signals to avoid the first hypothesis, and then uses nonlinear two-component fitting to avoid the second one. Compared with the approach based on the slope method, the new approach obtained more accurate boundary values and retrieving results for both of the simulated and real signals. Thus the automatic segmentation algorithm and the two-component fitting method are useful for determining the reference bin and boundary values when the effective detecting range of lidar is lower than the tropopause.

9.
Opt Express ; 18(6): 5629-38, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20389578

ABSTRACT

The atmosphere is often divided into several homogeneous layers in simulations of radiative transfer in plane-parallel media. This artificial stratification introduces discontinuities in the vertical distribution of the inherent optical properties at boundaries between layers, which result in discontinuous radiances and irradiances at layer interfaces, which lead to errors in the radiative transfer simulations. To investigate the effect of the vertical discontinuity of the atmosphere on radiative transfer simulations, a simple two layer model with only aerosols and molecules and no gas absorption is used. The results show that errors larger than 10% for radiances and several percent for irradiances could be introduced if the atmosphere is not layered properly.


Subject(s)
Aerosols/chemistry , Atmosphere/chemistry , Gases/chemistry , Models, Chemical , Nephelometry and Turbidimetry/methods , Light , Refractometry , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL