Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39209101

ABSTRACT

Chromogranin A (CgA), a âˆ¼ 49 kDa acidic secretory protein, is ubiquitously distributed in endocrine and neuroendocrine cells and neurons. As a propeptide, CgA is proteolytically cleaved to generate several peptides of biological importance, including pancreastatin (PST: hCgA250-301), Vasostatin 1 (VS1: hCgA1-76), and catestatin (CST: CgA 352-372). VS1 represents the most conserved fragment of CgA. A 20 amino acid domain within VS1 (CgA 47-66) exhibits potent antimicrobial and anti-inflammatory activities. Autism is known to be associated with inflammation. Therefore, we seek to test the hypothesis that VS1 modulates autism behaviors by reducing inflammation in the hippocampus. Treatment of C57BL/6 (B6) and BTBR (a mouse model of idiopathic autism) mice with VS1 revealed the following: BTBR mice showed a significant decrease in chamber time in the presence of a stranger or a novel object. Treatment with VS1 significantly increased chamber time in both cases, underscoring a crucial role for VS1 in improving behavioral deficits in BTBR mice. In contrast to chamber time, sniffing time in BTBR mice in the presence of a stranger was less compared to B6 control mice. VS1 did not improve this latter parameter. Surprisingly, sniffing time in BTBR mice in the presence of a novel object was comparable with B6 mice. Proinflammatory cytokines such as IL-6 and IL-1b, as well as other inflammatory markers, were elevated in BTBR mice, which were dramatically reduced after supplementation with VS1. Interestingly, even Beclin-1/p62, pAKT/AKT, and p-p70-S6K/p70-S6K ratios were notably reduced by VS1. We conclude that VS1 plays a crucial role in restoring autistic spectrum disorders (ASD) plausibly by attenuating neuroinflammation.


Subject(s)
Autistic Disorder , Chromogranin A , Disease Models, Animal , Hippocampus , Neuroinflammatory Diseases , Peptide Fragments , Animals , Male , Mice , Autistic Disorder/drug therapy , Autistic Disorder/metabolism , Chromogranin A/pharmacology , Chromogranin A/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Neuroinflammatory Diseases/drug therapy , Peptide Fragments/pharmacology
2.
Exp Neurol ; 366: 114432, 2023 08.
Article in English | MEDLINE | ID: mdl-37149279

ABSTRACT

Autism Spectrum Disorder (ASD) is increasing, but its complete etiology is still lacking. Recently, application of ketogenic diet (KD) has shown to reduce abnormal behaviors while improving psychological/sociological status in neurodegenerative diseases. However, KD role on ASD and underlying mechanism remains unknown. In this work, KD administered to BTBR T+ Itpr3tf/J (BTBR) and C57BL/6J (C57) mice reduced social deficits (p = 0.002), repetitive behaviors (p < 0.001) and memory impairments (p = 0.001) in BTBR. Behavioral effects were related to reduced expression levels of tumor necrosis factor alpha, interleukin-1ß, and interleukin-6 in the plasma (p = 0.007; p < 0.001 and p = 0.023, respectively), prefrontal cortex (p = 0.006; p = 0.04 and p = 0.03) and hippocampus (p = 0.02; p = 0.09 and p = 0.03). Moreover, KD accounted for reduced oxidative stress by changing lipid peroxidation levels and superoxide dismutase activity in BTBR brain areas. Interestingly, KD increased relative abundances of putatively beneficial microbiota (Akkermansia and Blautia) in BTBR and C57 mice while reversing the increase of Lactobacillus in BTBR feces. Overall, our findings suggest that KD has a multifunctional role since it improved inflammatory plus oxidative stress levels together with remodeling gut-brain axis. Hence, KD may turn out be a valuable therapeutic approach for ameliorating ASD-like conditions even though more evidence is required to evaluate its effectiveness especially on a long term.


Subject(s)
Autism Spectrum Disorder , Diet, Ketogenic , Microbiota , Mice , Animals , Autism Spectrum Disorder/metabolism , Mice, Inbred C57BL , Brain/metabolism , Disease Models, Animal , Mice, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL