Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 458: 131875, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37343409

ABSTRACT

Simultaneous detection of live and dead bacteria is a huge challenge for food safety. To solve this issue, an all-in-one biosensor for bacteria was developed using the phage-apoferritin@CuO2 (phage-Apo@CP) probe on an antimicrobial peptide (AMP)/MXenes-modified detection platform. With the specific recognition of AMP and phage-Apo@CP, the biosensor for the target Escherichia coli O157:H7 (E. coli O157:H7) presented multi-mode (bioluminescent, colorimetric, and electrochemical) signals to simultaneously measure live and dead bacteria. The bioluminescent signal caused by the adenosine triphosphate (ATP) from the bacteria was used to quantify live bacteria. The colorimetric and voltammetric signals triggered by ·OH and Cu2+ from the probe with the assistance of acid could rapidly screen and quantitative determination of total E. coli O157:H7 concentration. Thus, the dead one was obtained according to the total and live ones. All three signals could be mutually corrected to improve the accuracy. The biosensor was successfully used for on-site measurement of live and dead E. coli O157:H7 in food samples with the limit of detection of 30 CFU/mL for live ones and 6 CFU/mL for total bacteria within 50 min. This work presents a novel pathway for rapid and simultaneous quantification of both live and dead bacteria.


Subject(s)
Bacteriophages , Biosensing Techniques , Escherichia coli O157 , Food Microbiology , Apoferritins
2.
Polymers (Basel) ; 15(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904538

ABSTRACT

Ferritin with a highly symmetrical cage-like structure is not only key in the reversible storage of iron in efficient ferroxidase activity; it also provides unique coordination environments for the conjugation of heavy metal ions other than those associated with iron. However, research regarding the effect of these bound heavy metal ions on ferritin is scarce. In the present study, we prepared a marine invertebrate ferritin from Dendrorhynchus zhejiangensis (DzFer) and found that it could withstand extreme pH fluctuation. We then demonstrated its capacity to interact with Ag+ or Cu2+ ions using various biochemical and spectroscopic methods and X-ray crystallography. Structural and biochemical analyses revealed that both Ag+ and Cu2+ were able to bind to the DzFer cage via metal-coordination bonds and that their binding sites were mainly located inside the three-fold channel of DzFer. Furthermore, Ag+ was shown to have a higher selectivity for sulfur-containing amino acid residues and appeared to bind preferentially at the ferroxidase site of DzFer as compared with Cu2+. Thus, it is far more likely to inhibit the ferroxidase activity of DzFer. The results provide new insights into the effect of heavy metal ions on the iron-binding capacity of a marine invertebrate ferritin.

3.
Food Funct ; 14(5): 2362-2373, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36779260

ABSTRACT

Melanoma is a kind of skin cancer with high malignancy and strong proliferation and invasion abilities. Chemotherapy drugs in the clinic have the disadvantages of high price and high toxicity. Peptides are natural active ingredients that have many functions and are safe and effective. Previous studies have shown that oysters are rich in protein and have antitumor effects. In this study, a high-throughput strategy combined with MALDI TOF/TOF-MS and molecular docking was developed to screen peptides with antitumor functions from oyster hydrolysate. Three dominant peptides were predicted to have similar functions to IL-2 via molecular docking. Then, the activity of the peptides was confirmed in B16 cells, and we found that the three peptides increased the apoptosis of B16 cells. Furthermore, via RNA-seq and m6A-seq of B16 cells treated with the peptides, we found that ILADSAPR downregulates the expression of Pcna, Tlr4, and Ncbp2 and upregulates the expression of Bax, Bad, Pak4, Rasa2, Cct6, and Gbp2. ILADSAPR inhibited B16 cell proliferation and promoted cell apoptosis by regulating the expression of these genes. In addition, the result of metabolic pathway analysis also proved this point. This study provides a preliminary reference for antitumor research on oyster peptides.


Subject(s)
Melanoma , Ostreidae , Animals , Humans , Interleukin-2 , RNA-Seq , Molecular Docking Simulation , Peptides/pharmacology , Peptides/chemistry , Melanoma/drug therapy , Melanoma/genetics , Apoptosis , ras GTPase-Activating Proteins/pharmacology , p21-Activated Kinases/pharmacology
4.
Comb Chem High Throughput Screen ; 26(2): 424-435, 2023.
Article in English | MEDLINE | ID: mdl-35379119

ABSTRACT

BACKGROUND: The clinical diagnosis of major depressive disorder (MDD) mainly relies on subjective assessment of depression-like behaviors and clinical examination. In the present study, we aimed to develop a novel diagnostic model for specially predicting MDD. METHODS: The human brain GSE102556 DataSet and the blood GSE98793 and GSE76826 Data Sets were downloaded from the Gene Expression Omnibus (GEO) database. We used a novel algorithm, random forest (RF) plus artificial neural network (ANN), to examine gene biomarkers and establish a diagnostic model of MDD. RESULTS: Through the "limma" package in the R language, 2653 differentially expressed genes (DEGs) were identified in the GSE102556 DataSet, and 1786 DEGs were identified in the GSE98793 DataSet, and a total of 100 shared DEGs. We applied GSE98793 TrainData 1 to an RF algorithm and thereby successfully selected 28 genes as biomarkers. Furthermore, 28 biomarkers were verified by GSE98793 TestData 1, and the performance of these biomarkers was found to be perfect. In addition, we further used an ANN algorithm to optimize the weight of each gene and employed GSE98793 TrainData 2 to build an ANN model through the neural net package by R language. Based on this algorithm, GSE98793 TestData 2 and independent blood GSE76826 were verified to correlate with MDD, with AUCs of 0.903 and 0.917, respectively. CONCLUSION: To the best of our knowledge, this is the first time that the classifier constructed via DEG biomarkers has been used as an endophenotype for MDD clinical diagnosis. Our results may provide a new entry point for the diagnosis, treatment, outcome prediction, prognosis and recurrence of MDD.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/genetics , Gene Expression Profiling , Random Forest , Genetic Markers , Neural Networks, Computer
5.
J Sci Food Agric ; 103(8): 4077-4084, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36502373

ABSTRACT

BACKGROUND: Previous studies have shown that anserine can alleviate hyperuricemia by changing the fecal microbiota of hyperuricemic mice. TOPIC: However, the fecal microbiota could not fully represent the distribution of the whole gut microbiota. Knowing the spatial distribution of the gastrointestinal tract microbiota is therefore important for understanding its action in the occurrence and remission of hyperuricemia. METHODS: This study provides a comprehensive map of the most common bacterial communities that colonize different parts of the mouse gastrointestinal tract (stomach, duodenum, ileum, cecum, and colon) using a modern methodological approach. RESULTS: The stomach, colon, and cecum showed the greatest richness and diversity in bacterial species. Three clusters of bacterial populations were observed along the digestive system: (1) in the stomach, (2) in the duodenum and ileum, and (3) in the colon and cecum. A high purine solution changed the composition and abundance of the digestive tract microbiota, and anserine relieved hyperuricemia by restoring the homeostasis of the digestive tract microbiota, especially improving the abundance of probiotics in the digestive tract. IMPLICATION: This could be the starting point for further research on the regulation of hyperuricemia by gut microbiota with the ultimate goal of promoting health and welfare. © 2022 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Hyperuricemia , Animals , Mice , Anserine , Gastrointestinal Tract/microbiology , Cecum/microbiology , RNA, Ribosomal, 16S
6.
Polymers (Basel) ; 14(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36559745

ABSTRACT

Ferritin is widely acknowledged as a conservative iron storage protein found in almost all living kingdoms. Apostichopus japonicus (Selenka) is among the oldest echinoderm fauna and has unique regenerative potential, but the catalytic mechanism of iron oxidation in A. japonicus ferritin (AjFER) remains elusive. We previously identified several potential metal-binding sites at the ferroxidase center, the three- and four-fold channels in AjFER. Herein, we prepared AjFER, AjFER-E25A/E60A/E105A, AjFER-D129A/E132A, and AjFER-E168A mutants, investigated their structures, and functionally characterized these ferritins with respect to Fe2+ uptake using X-ray techniques together with biochemical analytical methods. A crystallographic model of the AjFER-D129A/E132A mutant, which was solved to a resolution of 1.98 Å, suggested that the substitutions had a significant influence on the quaternary structure of the three-fold channel compared to that of AjFER. The structures of these ferritins in solution were determined based on the molecular envelopes of AjFER and its variants by small-angle X-ray scattering, and the structures were almost consistent with the characteristics of well-folded and globular-shaped proteins. Comparative biochemical analyses indicated that site-directed mutagenesis of metal-binding sites in AjFER presented relatively low rates of iron oxidation and thermostability, as well as weak iron-binding affinity, suggesting that these potential metal-binding sites play critical roles in the catalytic activity of ferritin. These findings provide profound insight into the structure-function relationships related to marine invertebrate ferritins.

7.
Food Sci Nutr ; 10(11): 3814-3827, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36348794

ABSTRACT

Aging is closely related to altered gut function and its microbiome composition. To elucidate the mechanisms involved in the preventive effect of special high-docosahexaenoic acid tuna oil (HDTO) on senescence, the effects of different doses of HDTO on the gut microbiome and metabolome of d-galactose-induced aging mice were studied. Deferribacteres and Tenericutes and uridine might be used as indicator bacteria and characteristic metabolites to identify aging, respectively. HDTO markedly improved the impaired memory and antioxidant abilities induced by d-galactose. At the phylum level, the abundance of Firmicutes and Tenericutes was significantly increased upon d-galactose induction, while that of Bacteroidetes, Proteobacteria, and Deferribacteres was significantly decreased. At the genus level, the variation mainly presented as an increase in the abundance of the Firmicutes genera Ligilactobacillus, Lactobacillus, and Erysipelothrix, the decrease in the abundance of the Bacteroidetes genera Bacteroides and Alistipes, the Firmicutes genus Dielma, and the Deferribacteres genus Mucispirillum. HDTO supplementation reversed the alterations in the intestinal flora by promoting the proliferation of beneficial flora during the aging process; the metabolic pathways, such as glycine-serine-threonine metabolism, valine-leucine-isoleucine biosynthesis, and some metabolic pathways involved in uridine, were also partially restored. Furthermore, the correlation analysis illustrated an obvious correlation between gut microbiota, its metabolites, and aging-related indices. Moreover, it is worth noting that the metabolic regulation by dietary intervention varied with different HDTO doses and did not present a simple additive effect; indeed, each dose showed a unique modulation mechanism.

8.
Foods ; 11(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35627073

ABSTRACT

Staphylococcus aureus (S. aureus) has a strong tolerance to high salt stress. It is a major reason as to why the contamination of S. aureus in salted food cannot be eradicated. To elucidate its response and survival mechanisms, changes in the morphology, biofilm formation, virulence, transcriptome, and metabolome of S. aureus were investigated. IsaA positively regulates and participates in the formation of biofilm. Virulence was downregulated to reduce the depletion of nonessential cellular functions. Inositol phosphate metabolism was downregulated to reduce the conversion of functional molecules. The MtsABC transport system was downregulated to reduce ion transport and signaling. Aminoacyl-tRNA biosynthesis was upregulated to improve cellular homeostasis. The betaine biosynthesis pathway was upregulated to protect the active structure of proteins and nucleic acids. Within a 10% NaCl concentration, the L-proline content was upregulated to increase osmotic stability. In addition, 20 hub genes were identified through an interaction analysis. The findings provide theoretical support for the prevention and control of salt-tolerant bacteria in salted foods.

9.
Front Mol Biosci ; 9: 800008, 2022.
Article in English | MEDLINE | ID: mdl-35359603

ABSTRACT

In addition to its role as an iron storage protein, ferritin can function as a major detoxification component in the innate immune defense, and Cu2+ ions can also play crucial antibacterial roles in the blood clam, Tegillarca granosa. However, the mechanism of interaction between iron and copper in recombinant Tegillarca granosa ferritin (TgFer) remains to be investigated. In this study, we investigated the crystal structure of TgFer and examined the effects of Fe2+ and Cu2+ ions on the TgFer structure and catalytic activity. The crystal structure revealed that TgFer presented a typically 4-3-2 symmetry in a cage-like, spherical shell composed of 24 identical subunits, featuring highly conserved organization in both the ferroxidase center and the 3-fold channel. Structural and biochemical analyses indicated that the 4-fold channel of TgFer could be serviced as potential binding sites of metal ions. Cu2+ ions appear to bind preferentially with the 3-fold channel as well as ferroxidase site over Fe2+ ions, possibly inhibiting the ferroxidase activity of TgFer. Our results present a structural and functional characterization of TgFer, providing mechanistic insight into the interactions between TgFer and both Fe2+ and Cu2+ ions.

10.
J Sci Food Agric ; 102(12): 5531-5543, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35368101

ABSTRACT

BACKGROUND: The health benefits of tuna oil, which is different from the fish oil commonly studied, and its higher docosahexaenoic acid (DHA) content, have attracted much scientific attention in recent years. In this study, prepared tuna oil with higher DHA (HDTO) content was employed. It was the first to integrate microbiome and metabolome from a dose-effect perspective to investigate the influence of HDTO on gut dysbiosis and metabolic disorders in diet-induced obese mice. RESULTS: Higher DHA tuna oil was effective in reversing high-fat-diet-induced metabolic disorders and altering the composition and function of gut microbiota, but these effects were not uniformly dose dependent. The flora and metabolites that were targeted to be regulated by HDTO supplementation were Prevotella, Bifidobacterium, Olsenella, glycine, l-aspartate, l-serine, l-valine, l-isoleucine, l-threonine, l-tyrosine, glyceric acid, glycerol, butanedioic acid, and citrate, respectively. Functional pathway analysis revealed that alterations in these metabolic biomarkers were associated with six main metabolic pathways: glycine, serine, and threonine metabolism; glycerolipid metabolism; glyoxylate and dicarboxylate metabolism; alanine, aspartate, and glutamate metabolism; aminoacyl-tRNA biosynthesis, and the citrate cycle (TCA cycle). CONCLUSION: Various doses of HDTO could attenuate endogenous disorders to varying degrees by regulating multiple perturbed pathways to the normal state. This explicit dose research for novel fish oil with high-DHA will provide a valuable reference for those seeking to exploit its clinical therapeutic potential. © 2022 Society of Chemical Industry.


Subject(s)
Docosahexaenoic Acids , Tuna , Animals , Citrates , Diet, High-Fat/adverse effects , Docosahexaenoic Acids/metabolism , Dysbiosis/drug therapy , Fish Oils/chemistry , Glycine , Mice , Tuna/metabolism
11.
Food Funct ; 13(7): 3865-3878, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35274663

ABSTRACT

Hyperuricemia (HUA) is the second most common metabolic disease nowadays, and is characterized by permanently increased concentrations of serum uric acid. In this study, two novel hexapeptides (GPAGPR and GPSGRP) were identified from Apostichopus japonicus hydrolysate and predicted to have xanthine oxidase (XOD) inhibitory activity by molecular docking. Their in vitro XOD inhibition rates reached 37.3% and 48.6%, respectively, at a concentration of 40 mg mL-1. Subsequently, in vivo experiments were carried out in a HUA mouse model, and we found that both peptides reduced the serum uric acid by inhibiting uric acid biosynthesis and reabsorption, as well as alleviated renal inflammation via suppressing the activation of the NLRP3 inflammasome. 16S rDNA sequencing indicated that both peptide treatments reduced the richness and diversity of the gut microbiota, altered the composition in the phylum and genus levels, but different change trends were observed in the phylum Verrucomicrobia and genera Akkermansia, Dubosiella, Alloprevotella, Clostridium unclassified and Alistipes. In addition, changes in the renal microRNA (miRNA) profiles induced by GPSGRP treatment were analyzed; 21 differentially expressed (DE) miRNAs were identified among groups, and KEGG pathway analysis indicated that their potential target genes were involved in pluripotency of stem cell regulation, mTOR signaling pathway and proteoglycans. Moreover, ten miRNAs involved in the HUA onset and alleviation were identified, which showed a high correlation with genera related to the metabolism of short-chain fatty acids, bile acids and tryptophan. This study delineated two hexapeptides as potential microbiota modulators and miRNA regulators that can ameliorate HUA.


Subject(s)
Gastrointestinal Microbiome , Hyperuricemia , MicroRNAs , Stichopus , Animals , Mice , MicroRNAs/genetics , Molecular Docking Simulation , Stichopus/metabolism , Uric Acid , Xanthine Oxidase
12.
Food Funct ; 13(2): 1027, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34989364

ABSTRACT

Correction for 'The gut microbiota mediates the protective effects of anserine supplementation on hyperuricaemia and associated renal inflammation' by Jiaojiao Han et al., Food Funct., 2021, 12, 9030-9042, DOI: 10.1039/D1FO01884A.

13.
FEBS Open Bio ; 12(3): 664-674, 2022 03.
Article in English | MEDLINE | ID: mdl-35090095

ABSTRACT

Ferritin is considered to be an ubiquitous and conserved iron-binding protein that plays a crucial role in iron storage, detoxification, and immune response. Although ferritin is of critical importance for almost all kingdoms of life, there is a lack of knowledge about its role in the marine invertebrate sea cucumber (Apostichopus japonicus). In this study, we characterized the first crystal structure of A. japonicus ferritin (AjFER) at 2.75 Å resolution. The structure of AjFER shows a 4-3-2 symmetry cage-like hollow shell composed of 24 subunits, mostly similar to the structural characteristics of other known ferritin species, including the conserved ferroxidase center and 3-fold channel. The 3-fold channel consisting of three 3-fold negative amino acid rings suggests a potential pathway in which metal ions can be first captured by Asp120 from the outside environment, attracted by His116 and Cys128 when entering the channel, and then transferred by Glu138 from the 3-fold channel to the ferroxidase site. Overall, the presented crystal structure of AjFER may provide insights into the potential mechanism of the metal transport pathway for related marine invertebrate ferritins.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Crystallography , Ferritins/chemistry , Ferritins/metabolism , Invertebrates/metabolism , Sea Cucumbers/metabolism , Stichopus/metabolism
14.
ACS Omega ; 6(43): 28569-28578, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34746552

ABSTRACT

Iodine plays a key role in maintaining thyroid homeostasis, which is influenced by hormones through almost all nucleated cells and is essential for growth and metabolism. The most common kinds of thyroid dysfunction, hypothyroidism and hyperthyroidism, are markedly related to iodine intake. In addition, the prevalence and incidence of hypothyroidism and hyperthyroidism are much higher in women than in men. However, the association between thyroid homeostasis and the gut microbiota is not yet completely clear, especially when comparing women and men. In this study, differences in the gut microbiota compositions, metabolic syndromes, and molecular mechanisms of female and male mice were investigated after iodine supplementation. The gut microbiota in male mice was changed more than that of female mice. The abundances of Muribacium intestinale, Barnesiella, Alloprevotella, Enterococcus, Desulfovibrionaceae, and Clostridium were significantly increased in female mice. This finding indicates that the high risk of thyroid disease in women could be related to the gut microbiota composition.

15.
Free Radic Biol Med ; 177: 326-336, 2021 12.
Article in English | MEDLINE | ID: mdl-34748910

ABSTRACT

This study aimed to investigate the dipeptide amino acid profiles correlated with xanthine oxidase (XOD) inhibitory activity and guide screening to determine suitable sources for XOD inhibitor protein hydrolysate preparation. The XOD inhibitory activities of 400 dipeptides were predicted via molecular docking and measured in vitro, and amino acids containing aromatic structures and charged residues were correlated with high XOD inhibitory properties. Subsequently, the effects of Cys-Glu and Lys-Glu, which showed the highest in vitro activities, were examined in hyperuricaemic mice, and were found to alleviate hyperuricaemia and modulate the gut microbiota. Furthermore, a suitable protein from Oreochromis mossambicus with high contents of charged (8.6%) and aromatic (1.67%) amino acids was screened, and the in vitro inhibitory rates of protein hydrolysate prepared from O. mossambicus against XOD were found to be 21.90% and 44.51% at 40 and 100 mg/ml, respectively. This study provides a strategy for screening protein hydrolysate sources with certain activities based on amino acid profiles.


Subject(s)
Amino Acids/pharmacology , Enzyme Inhibitors , Hyperuricemia , Xanthine Oxidase , Animals , Enzyme Inhibitors/pharmacology , Hyperuricemia/drug therapy , Mice , Molecular Docking Simulation , Protein Hydrolysates , Xanthine Oxidase/antagonists & inhibitors
16.
Food Funct ; 12(19): 9030-9042, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34382991

ABSTRACT

Hyperuricaemia is a disease associated with elevated serum uric acid content, which has emerged rapidly in recent decades. The drugs used to treat clinical hyperuricaemia have side effects, and their safety is poor. However, anserine is a natural carnosine derivative that shows an anti-hyperuricaemic effect. A previous study demonstrated that anserine inhibits uric acid synthesis and promotes uric acid excretion, but there is no evidence regarding the effect of anserine from the perspective of the gut microbiota. In this study, the anti-hyperuricaemic and anti-inflammatory effects of anserine were explored in a diet-induced hyperuricaemic mouse model. Anserine alleviated hyperuricaemia and renal inflammation phenotypes, inhibited uric acid biosynthesis, promoted uric acid excretion, and inhibited NLRP3 inflammasome and TLR4/MyD88/NF-κB signalling pathway activation. The results showed that the anti-hyperuricaemic effect of anserine was dependent on the gut microbiota in the germ-free mice experiment. Furthermore, anserine treatment reversed gut microbiota dysbiosis, repaired the intestinal epithelial barrier and increased short-chain fatty acid production. Moreover, the anti-hyperuricaemic effect of anserine was transmissible by transplanting the faecal microbiota from anserine-treated mice, indicating that the protective effects were at least partially mediated by the gut microbiota. Thus, we identified a new and safe prebiotic material to alleviate hyperuricaemia and provided ideas for the development of oligopeptides.


Subject(s)
Anserine/therapeutic use , Dietary Supplements , Hyperuricemia/drug therapy , Animals , Anserine/administration & dosage , Anserine/pharmacology , Disease Models, Animal , Feces/microbiology , Functional Food , Gastrointestinal Microbiome/drug effects , Humans , Male , Mice , Mice, Inbred ICR , Phytotherapy , Uric Acid/blood
17.
Mol Nutr Food Res ; 65(14): e2100147, 2021 07.
Article in English | MEDLINE | ID: mdl-34018696

ABSTRACT

SCOPE: This study aims to investigate the protective effect of Apostichopus japonicus oligopeptide (AJOP) on hyperuricemia, demonstrate the modulation of the gastrointestinal tract (GIT) microbiota, and clarify the underlying microbiota-dependent mechanism. METHODS AND RESULTS: Hyperuricemic mice treated with AJOP and subjected to corresponding fecal microbiota transplantation (FMT) are used to observe the beneficial effects of AJOP and microbiota. Gene transcriptions are measured using quantitative real-time PCR. The GIT (stomach, colon, cecum, and feces) microbiota is analyzed by 16S rDNA sequencing and the short-chain fatty acids are detected using GC-MS. Dietary administration of AJOP significantly alleviates hyperuricemia, regulates uric acid metabolism, inhibites the activation of the NLRP3 inflammasome and NF-κB-related signaling pathway, and restores m6A methylation levels. In addition, substantial heterogeneity is observed in GIT microbiota. Furthermore, FMT effectively alleviates hyperuricemia in mice by selectively regulating the corresponding pathways associated with AJOP treatment, indicating that the mechanism underlying the protective effects of AJOP is partly microbiota-dependent. CONCLUSION: This study demonstrates that AJOP exerts a protective effect on hyperuricemic mice by regulating uric acid metabolism, resulting in substantial heterogeneity among the GIT microbiota, thus mediating the beneficial effects in a microbiota-dependent manner.


Subject(s)
Gastrointestinal Microbiome/drug effects , Hyperuricemia/drug therapy , Oligopeptides/pharmacology , Plant Preparations/pharmacology , Stichopus/chemistry , Animals , Fecal Microbiota Transplantation , Male , Mice , Mice, Inbred ICR , NF-kappa B/metabolism , Signal Transduction/drug effects , Uric Acid/metabolism
19.
Ecotoxicol Environ Saf ; 212: 111995, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33529923

ABSTRACT

Ferritin is the major intracellular iron storage protein and is essential for iron homeostasis and detoxification. Cadmium affects cellular homeostasis and induces cell toxicity via sophisticated mechanisms. Here, we aimed to explore the mechanisms of cytoprotective effect of Phascolosoma esculenta ferritin (PeFer) on Cd(II)-induced bone marrow mesenchymal stem cell (BMSC) injury. Herein, the effects of different treated groups on apoptosis and cell cycle were assessed using flow cytometric analysis. We further investigated the alterations of the three groups using integrative 2-DE-based proteomics and 1H NMR-based metabolomics profiles. The results indicate that PeFer reduces BMSC apoptosis induced by Cd(II) and delays G0/G1 cell cycle progression. A total of 19 proteins and 70 metabolites were significantly different among BMSC samples of the three groups. Notably, multiomics analysis revealed that Cd(II) might perturb the ER stress-mediated apoptosis pathway and disrupt biological processes related to the TCA cycle, amino acid metabolism, purine and pyrimidine metabolism, thereby suppressing the cell growth rate and initiating apoptosis; however, the addition of PeFer might protect BMSCs against cell apoptosis to improve cell survival by enhancing energy metabolism. This study provides a better understanding of the underlying molecular mechanisms of the protective effect of PeFer in BMSCs against Cd(II) injury.


Subject(s)
Apoptosis/drug effects , Cadmium/toxicity , Ferritins/pharmacology , Mesenchymal Stem Cells/drug effects , Polychaeta/metabolism , Protective Agents/pharmacology , Animals , Cadmium/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Energy Metabolism/drug effects , Ferritins/metabolism , Mesenchymal Stem Cells/pathology , Metabolomics , Mice, Inbred C57BL , Protective Agents/metabolism , Proteomics
20.
FEBS Open Bio ; 11(3): 793-803, 2021 03.
Article in English | MEDLINE | ID: mdl-33448656

ABSTRACT

For marine invertebrates with no adaptive immune system, ferritin is a major intracellular iron-storage protein with a critical role in innate immunity. Here, we present the crystal structures of two novel ferritins [Fer147 and Phascolosoma esculenta ferritin (PeFer)] from the marine invertebrate P. esculenta, which resides in muddy-bottom coastal regions. Fer147 and PeFer exhibit the 4-3-2 symmetry of cage-like hollow shells containing 24 subunits, similar to other known ferritins. Fer147 and PeFer contain both the conserved ferroxidase center and threefold channels. Subtle structural differences in the putative nucleation sites suggest possible routes of metal ion movement in the protein shells. However, the marked variation in the electrostatic potential of the threefold channels in Fer147 and the fourfold channels in PeFer suggests significant diversity between Fer147 and PeFer in terms of metal ion aggregation and cation exclusion. In summary, the presented crystal structures may serve as references for studies of the iron-storage mechanism of additional ferritins from marine invertebrates.


Subject(s)
Ferritins/chemistry , Ferritins/genetics , Invertebrates/metabolism , Animals , Aquatic Organisms/chemistry , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Circular Dichroism , Cloning, Molecular , Invertebrates/chemistry , Invertebrates/genetics , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...