Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 10: e12701, 2022.
Article in English | MEDLINE | ID: mdl-35127279

ABSTRACT

Fungal communities are known to contribute to the functioning of living plant microbiomes as well as to the decay of dead plant material and affect vital ecosystem services, such as pathogen resistance and nutrient cycling. Yet, factors that drive structure and function of phyllosphere mycobiomes and their fate in leaf litter are often ignored. We sought to determine the factors contributing to the composition of communities in temperate forest substrates, with culture-independent amplicon sequencing of fungal communities of pre-senescent leaf surfaces, internal tissues, leaf litter, underlying humus soil of co-occurring red maple (Acer rubrum) and shagbark hickory (Carya ovata). Paired samples were taken at five sites within a temperate forest in southern Michigan, USA. Fungal communities were differentiable based on substrate, host species, and site, as well as all two-way and three-way interactions of these variables. PERMANOVA analyses and co-occurrence of taxa indicate that soil communities are unique from both phyllosphere and leaf litter communities. Correspondence of endophyte, epiphyte, and litter communities suggests dispersal plays an important role in structuring fungal communities. Future work will be needed to assess how this dispersal changes microbial community functioning in these niches.


Subject(s)
Acer , Carya , Microbiota , Mycobiome , Acer/microbiology , Plant Leaves/microbiology , Soil
2.
Plant Dis ; 105(10): 3111-3117, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34752135

ABSTRACT

Rhizoctonia solani anastomosis group (AG) 2-2 can cause seedling damping-off in sugar beets and substantial losses may occur in all regions where beets are grown. Sugar beets are planted early in the season when soil temperatures are low in order to maximize the length of the growing season and minimize the risk of damping-off. However, predictive models that indicate there is little to no risk of Rhizoctonia damping-off at temperatures <15°C may not be entirely reliable. We tested this possibility by inoculating sugar beet seedlings in a growth chamber at 11°C with 35 R. solani AG 2-2 isolates that were representative of the genetic diversity present in AG 2-2. Although disease progress and growth rate were greatly reduced at 11°C, considerable disease symptoms did develop in inoculated plants. Three weeks after inoculation, 16% of the plants were dead and 77% of the isolates tested had average disease severity scores that were significantly greater than those of the mock inoculated control. This confirms our concern about the possibility for low-temperature infection of sugar beets and indicates that waiting until the soil warms up to above 15°C to apply fungicide could leave the crop at risk. Aggressiveness does not appear to be related to subgroup or growth rate but rather depends on the response of the specific isolate to low temperature.


Subject(s)
Beta vulgaris , Rhizoctonia , Anastomosis, Surgical , Plant Diseases , Seedlings , Sugars , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL