Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34410304

ABSTRACT

Löfgren's syndrome (LS) is an acute form of sarcoidosis characterized by a genetic association with HLA-DRB1*03 (HLA-DR3) and an accumulation of CD4+ T cells of unknown specificity in the bronchoalveolar lavage (BAL). Here, we screened related LS-specific TCRs for antigen specificity and identified a peptide derived from NAD-dependent histone deacetylase hst4 (NDPD) of Aspergillus nidulans that stimulated these CD4+ T cells in an HLA-DR3-restricted manner. Using ELISPOT analysis, a greater number of IFN-γ- and IL-2-secreting T cells in the BAL of DR3+ LS subjects compared with DR3+ control subjects was observed in response to the NDPD peptide. Finally, increased IgG antibody responses to A. nidulans NDPD were detected in the serum of DR3+ LS subjects. Thus, our findings identify a ligand for CD4+ T cells derived from the lungs of LS patients and suggest a role of A. nidulans in the etiology of LS.


Subject(s)
Aspergillus nidulans/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , Epitopes, T-Lymphocyte/immunology , Sarcoidosis/immunology , Adult , Animals , Antigens, Fungal/immunology , Case-Control Studies , Female , Fungal Proteins/immunology , HLA-DR3 Antigen/chemistry , HLA-DR3 Antigen/genetics , HLA-DR3 Antigen/immunology , Humans , Hybridomas/immunology , Immunoglobulin G , Male , Mice, Transgenic , Middle Aged
2.
Diabetes ; 69(8): 1763-1769, 2020 08.
Article in English | MEDLINE | ID: mdl-32439825

ABSTRACT

Certain HLA class II genes increase the risk for type 1 diabetes (T1D) development while others provide protection from disease development. HLA class II alleles encode MHC proteins on antigen-presenting cells, which function to present peptides and activate CD4 T cells. The DRB1*15:01 (DR15)-DQA1*01:02-DQB1*06:02 (DQ6) haplotype provides dominant protection across all stages of T1D and is a common haplotype found in Caucasians. However, it is present in <1% of people with T1D. Knowing which metabolic, immunologic, and genetic features are unique to individuals who fail genetic protection and develop T1D is important for defining the underlying mechanisms of DQB1*06:02-mediated protection. We describe a T1D cohort with DQB1*06:02 (n = 50) and compare them to individuals with T1D and without DQB1*06:02 (n = 2,759) who were identified over the last 26 years at the Barbara Davis Center for Diabetes. The age at diagnosis was similar between the cohorts and normally distributed throughout childhood and early adulthood. The average hemoglobin A1c was 10.8 ± 2.8% (95 ± 7 mmol/mol) at diagnosis in those DQB1*06:02 positive. The majority of T1D DQB1*06:02 + individuals were positive for one or more islet autoantibodies; however, there was a greater proportion who were islet autoantibody negative compared with those T1D DQB1*06:02 - individuals. Interestingly, DQB1*03:02, which confers significant T1D risk, was present in only those DQB1*06:02 + individuals with islet autoantibodies. This is one of the largest studies examining patients presenting with clinical T1D in the presence of DQB1*06:02, which provides a population to study the mechanisms of failed genetic protection against T1D.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Glycated Hemoglobin/genetics , HLA-DQ beta-Chains/genetics , Adolescent , Alleles , Child , Child, Preschool , Female , Haplotypes/genetics , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL