Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Membranes (Basel) ; 14(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786936

ABSTRACT

The only currently active industrial-scale plant that uses coal mine brines, located in Czerwionka-Leszczyny, uses ZOD (Zaklad Odsalania Debiensko, the name of the plant's former owner) technology, based on mechanical vapor compression evaporators. The plant produces evaporated salt that meets the specifications for edible salt; however, the technology is highly energy-consuming. The presented work focuses on the modeling of ZOD technology if applied to the water treatment of the 'Ziemowit-650' coal mine. Using the results of bench-scale investigation of brine nanofiltration and a mathematical model of ZOD technology based on Czerwionka-Leszczyny performance, the energy consumption per ton of produced salt was estimated for two cases: (1) ZOD technology treating the 'Ziemowit-650' brine and (2) ZOD technology treating the permeate of nanofiltration (NF) working on the 'Ziemowit-650' brine. The sensitivity of the system was investigated in the range of -10% to + 10% of Cl-, SO42-, Mg2+, and Ca2+ concentration, assuming that the sodium concentration also changes to meet the electroneutrality requirement. The results show that nanofiltration pretreatment not only decreases energy consumption but it also makes salt production less sensitive to fluctuations in feed water composition.

2.
Membranes (Basel) ; 12(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36557098

ABSTRACT

The Debiensko plant in Czerwionka-Leszczyny, Poland, producing evaporated salt from the saline mine water, faces increasing operating costs due to its high energy consumption. To improve the performance of the plant, a two-pass nanofiltration with intermediate crystallization of gypsum was proposed as a pretreatment. Based on the results of pilot-scale research, it was found that the removal of most of the calcium, magnesium, and sulfate allows a substantial reduction in the concentration of these components in the concentrated brine, which is then directed to a sodium chloride crystallization evaporator. This makes it possible to increase salt yield from the current 58.8% to 76.1% and indirectly reduce energy consumption from 1350 kWh/t to 1068 kWh/t. At the same time, the volume of the highly saline post-crystallization lyes is decreased by 66%, and a new stream is obtained: a Mg-rich solution, which could be used for magnesium hydroxide recovery.

3.
Membranes (Basel) ; 11(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34436401

ABSTRACT

Poland still relies largely on coal for energy generation, which creates environmental problems connected to the mining process, particularly the issue of saline waste water discharge. Membrane-based zero liquid discharge systems can be employed to recover important resources from coal mine waste waters, such as demineralized water, salt, magnesium hydroxide, and gypsum. In this paper, we present a historical overview of proposed membrane-based solutions for the Polish coal mining industry and discuss possible further areas of research.

4.
Membranes (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35054570

ABSTRACT

Waste glycerol generated during biofuel production accounts for ~10% of total biodiesel volume. Increasing the use of renewable energy sources, including so-called biodiesel, will significantly increase the amount of waste glycerol for disposal. One possible route for waste glycerol reuse is to use it as a draw solution in forward osmosis (FO). Glycerol solutions are particularly suited as FO draw solutions due to their high osmotic pressures. In this work, the effects of waste glycerol composition on FO draw solution osmotic pressures, as well as the effects of membrane type and linear flow velocities on FO water and reverse flux, were investigated. Those results indicated the feasibility of using waste glycerol as a draw solution in FO, allowing the reuse of significant amounts of this by-product.

6.
Membranes (Basel) ; 10(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076424

ABSTRACT

Nanofiltration can be applied for the treatment of mine waters. One of the main problems is the risk of crystallization of sparingly soluble salts on the membrane surface (scaling). In this work, a series of batch-mode nanofiltration experiments of the mine waters was performed in a dead-end Sterlitech® HP 4750X Stirred Cell. Based on the laboratory results, the concentration profiles of individual ions along the membrane length in a single-pass industrial-scale nanofiltration (NF) unit was calculated, assuming the tanks-in-series flow model inside the membrane module. These calculations also propose a method for estimating the maximum achievable recovery before the occurrence of the calcium sulfate dihydrate scaling in a single-pass NF 40″ length spiral wound module, simultaneously allowing metastable supersaturation of calcium sulfate dihydrate. The performance of three membrane types (NF270, NFX, NFDL) has been evaluated for the nanofiltration of mine water.

7.
Polymers (Basel) ; 11(4)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010215

ABSTRACT

Boron is an essential element for plants and living organisms; however, it can be harmful if its concentration in the environment is too high. In this paper, lanthanum(III) ions were introduced to the structure of chitosan via an encapsulation technique and the obtained hydrogel (La-CTS) was used for the elimination of the excess of B(III) from modelling solutions. The reaction between boric acid and hydroxyl groups bound to the lanthanum coordinated by chitosan active centres was the preponderant mechanism of the bio-adsorption removal process. The results demonstrated that La-CTS removed boric acid from the aqueous solution more efficiently than either lanthanum hydroxide or native chitosan hydrogel, respectively. When the initial boron concentration was 100 mg/dm3, the maximum adsorption capacity of 11.1 ± 0.3 mg/g was achieved at pH 5 and the adsorption time of 24 h. The successful introduction of La(III) ions to the chitosan backbone was confirmed by Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, X-ray Photoelectron Spectroscopy, and Inductively Coupled Plasma Optical Emission Spectroscopy. Due to its high-performance boron adsorption-desorption cycle and convenient form, La-CTS seems to be a promising bio-adsorbent for water treatment.

8.
Molecules ; 22(12)2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29261140

ABSTRACT

A new hybrid sorbent in the form of round beads containing modified poly(methyl methacrylate) (PMMA) waste immobilized in pectin and crosslinked with calcium ions was prepared. A previously obtained and characterized powdered poly(methyl methacrylate)-based sorbent was used. Batch and column studies on the new material's sorption-desorption properties were performed. Two kinetic models (pseudo-first- and pseudo-second-order) and three isotherms (Langmuir, Langmuir bisite and Freundlich) were used to describe the results. Breakthrough and elution curves were also obtained. Nitric, hydrochloric, and sulfuric acid of various concentrations were used in the desorption studies. Higher sorption affinity of zinc(II) ions to hybrid sorbent than to pectin alone, reflected by higher values of the Langmuir and Freundlich model parameters, was observed. The maximum sorption capacities, calculated based on the best-fitted models, were 50.2 mg/g (Langmuir bisite) and 42.2 mg/g (Langmuir) for hybrid and only pectin beads, respectively. The stripping of Zn ions using 0.1 M solutions of mineral acids was similarly effective in the case of both sorbents. The mass balance calculated for the column studies showed about 100% recovery of zinc in a sorption-desorption cycle. By applying the hybrid sorbent under the studied conditions it is possible to purify Zn in water to the level permitted by law and concentrate Zn(II) ions by about 60 times.


Subject(s)
Microspheres , Pectins/chemistry , Polymethyl Methacrylate/chemistry , Waste Disposal, Fluid/methods , Zinc/isolation & purification , Adsorption , Calcium/chemistry , Cations, Divalent , Hydrogen-Ion Concentration , Kinetics , Thermodynamics , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification
9.
Article in English | MEDLINE | ID: mdl-29168758

ABSTRACT

Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead.


Subject(s)
Knee Joint/chemistry , Trace Elements/analysis , Aged , Bone and Bones/chemistry , Calcium/analysis , Female , Femur/chemistry , Humans , Lead/analysis , Magnesium/analysis , Male , Middle Aged , Phosphorus/analysis , Sodium/analysis , Strontium/analysis , Tibia/chemistry
10.
Materials (Basel) ; 10(7)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28773117

ABSTRACT

The new one-pot hydrolysis-crosslinking reaction was used to synthesize a new, waste poly(methyl methacrylate) (PMMA)-based material for zinc(II) ions removal. The alkaline hydrolysis of PMMA in diethylene glycol diethyl ether was used to obtain polymer matrix and it was then crosslinked with Ca and Mg ions to obtain the sorbent. As a result, the macroporous materials were obtained with a yield of 87% when waste PMMA was used, and about 95% when the commercial PMMAs were used. The degree of hydrolysis was similar, from 32% to 35%. New materials were then tested for their affinity towards zinc(II) ions. Two kinetic models (pseudo-first and pseudo-second order), as well as two isotherms (Langmuir and Freundlich), were used to describe the kinetics and equilibrium of zinc(II) ion sorption on the studied materials, respectively. All the prepared PMMA-based sorbents showed similar or higher sorption capacity (q up to 87.7 mg/g) compared to commercially available materials in a broad pH range (4-7). The study shows sorption was fast-above 80% of equilibrium capacity was achieved after ca. 0.5 h. Presented results show that waste PMMA may be an interesting raw material for the preparation of sorbents for zinc(II) ions removal.

11.
Materials (Basel) ; 10(7)2017 Jul 22.
Article in English | MEDLINE | ID: mdl-28773203

ABSTRACT

The previously-obtained and characterized hybrid pectin-based beads containing agar-agar and guar gum, as well as sole pectin beads (P, for comparison) were examined for zinc ions sorption and desorption properties. The sorption kinetics and equilibrium in the studied system was described by two kinetic models (pseudo-first- and pseudo-second-order) and two isotherms (Langmuir and Freundlich), respectively. The desorption kinetics and equilibrium was also investigated by applying various inorganic acids (nitric, hydrochloric, and sulfuric acid) of various concentrations. In the case of guar gum additive, no significant change in sorption capacity compared to sole pectin beads was observed (q: 37.0 ± 2.6 and 34.7 ± 2.0 mg/g, respectively). Addition of agar-agar significantly decreased the sorption capacity to 22.3 ± 1.0 mg/g, but stripping of zinc(II) ions from this biosorbent was complete even with very diluted acids (0.01 M). Total desorption of zinc from sole pectin and pectin-guar gum beads required acid solution of higher concentration (0.1 M). Sorption rates for all biosorbents are roughly the same and maximum sorption is achieved after 4-5 h. Obtained results and the advantage of our sorbent's shape formation ability, make the pectin-based biosorbents interesting alternative for zinc(II) ions removal.

12.
Carbohydr Polym ; 169: 213-219, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28504138

ABSTRACT

In this paper, a set of the hybrid biosorbents, made of pectin and polysaccharide additives (arabic, tragacanth, guar, karaya, xanthan, gellan, carob gums, agar-agar) or lecithin (phospholipid), was investigated and tested for zinc ions removal. The immobilization of the polysaccharides into the pectin matrix was proved by the IR spectroscopy. The structure of the working biosorbents was observed in SEM micrographs. The influence of the additive type and pH on the sorption properties and swelling index was investigated. The maximum sorption capacities were achieved in pH above 4 and ranged from 17.7 to 25.4mg/g for lecithin and xanthan gum as additives, respectively. The results show that the hybrid pectin-based beads are promising biosorbents for zinc removal from aqueous solutions.


Subject(s)
Pectins/chemistry , Plant Gums/chemistry , Zinc/isolation & purification , Ions
13.
Przegl Lek ; 61(10): 1144-6, 2004.
Article in Polish | MEDLINE | ID: mdl-15794274

ABSTRACT

The purpose of this work was the elemental analysis of 12 heavy metals concentration in some part in femur capitulum smoking and non smoking women and men, living in Silesian Towns: Katowice, Siemianowice, Czeladz. Femoral capitulum were obtained at total hip replacement operations of 86 women and men with idiopathic osteroarthrosis which smoking in early time.


Subject(s)
Femur Head/chemistry , Metals, Heavy/analysis , Smoking/adverse effects , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL