Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev E ; 104(3): L032801, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654133

ABSTRACT

We identify a neutron-flux "skin effect" in the context of neutron transport theory. The skin effect, which emerges as a boundary layer at material interfaces, plays a critical role in a correct description of transport phenomena. A correct accounting of the boundary-layer structure helps bypass computational difficulties reported in the literature over the last several decades, and should lead to efficient numerical methods for neutron transport in two and three dimensions.

2.
J Phys Chem A ; 113(52): 14573-82, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-19788257

ABSTRACT

In this paper we present a theory to describe three-body reactions. Fragmentation processes are studied by means of the Schrodinger equation in hyperspherical coordinates. The three-body wave function is written as a sum of two terms. The first one defines the initial channel of the collision while the second one describes the scattered wave, which contains all the information about the collision process. The dynamics is ruled by an nonhomogeneous equation with a driven term related to the initial channel and to the three-body interactions. A basis set of functions with outgoing behavior at large values of hyperradius is introduced as products of angular and radial hyperspherical Sturmian functions. The scattered wave is expanded on this basis and the nonhomogeneous equation is transformed into an algebraic problem that can be solved by standard matrix methods. To be able to deal with general systems, discretization schemes are proposed to solve the angular and radial Sturmian equations. This procedure allows these discrete functions to be connected with the hyperquatization algorithm. Finally, the fragmentation transition amplitude is derived from the asymptotic limit of the scattered wave function.

SELECTION OF CITATIONS
SEARCH DETAIL