Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Parasit Vectors ; 17(1): 289, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971773

ABSTRACT

BACKGROUND: The current rise of new innovative tools for mosquito control, such as the release of transgenic mosquitoes carrying a dominant lethal gene and Wolbachia-based strategies, necessitates a massive production of mosquitoes in the insectary. However, currently laboratory rearing depends on vertebrate blood for egg production and maintenance. This practice raises ethical concerns, incurs logistical and cost limitations, and entails potential risk associated with pathogen transmission and blood storage. Consequently, an artificial blood-free diet emerges as a desirable alternative to address these challenges. This study aims to evaluate the effects of a previously formulated artificial blood-free diet (herein referred to as BLOODless) on Anopheles gambiae (An. gambiae s.s.; IFAKARA) gonotrophic parameters and fitness compared with bovine blood. METHODS: The study was a laboratory-based comparative evaluation of the fitness, fecundity and fertility of An. gambiae s.s. (IFAKARA) reared on BLOODless versus vertebrate blood from founder generation (F0) to eighth generation (F8). A total of 1000 female mosquitoes were randomly selected from F0, of which 500 mosquitoes were fed with bovine blood (control group) and the other 500 mosquitoes were fed with BLOODless diet (experimental group). The feeding success, number of eggs per female, hatching rate and pupation rate were examined post-feeding. Longevity and wing length were determined as fitness parameters for adult male and female mosquitoes for both populations. RESULTS: While blood-fed and BLOODless-fed mosquitoes showed similar feeding success, 92.3% [95% confidence interval (CI) 89.7-94.9] versus 93.6% (95% CI 90.6-96.6), respectively, significant differences emerged in their reproductive parameters. The mean number of eggs laid per female was significantly higher for blood-fed mosquitoes (P < 0.001) whereas BLOODless-fed mosquitoes had significantly lower hatching rates [odds ratio (OR) 0.17, 95% CI 0.14-0.22, P < 0.001]. Wing length and longevity were similar between both groups. CONCLUSIONS: This study demonstrates the potential of the BLOODless diet as a viable and ethical alternative to vertebrate blood feeding for rearing An. gambiae s.s. This breakthrough paves the way for more efficient and ethical studies aimed at combating malaria and other mosquito-borne diseases.


Subject(s)
Anopheles , Diet , Fertility , Animals , Anopheles/physiology , Female , Diet/veterinary , Male , Cattle , Mosquito Control/methods , Genetic Fitness , Blood , Mosquito Vectors/physiology , Mosquito Vectors/genetics , Reproduction
2.
Infect Dis Poverty ; 12(1): 116, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38105258

ABSTRACT

BACKGROUND: Progress in malaria control has stalled in recent years and innovative surveillance and response approaches are needed to accelerate malaria control and elimination efforts in endemic areas of Africa. Building on a previous China-UK-Tanzania pilot study on malaria control, this study aimed to assess the impact of the 1,7-malaria Reactive Community-Based Testing and Response (1,7-mRCTR) approach implemented over two years in three districts of Tanzania. METHODS: The 1,7-mRCTR approach provides community-based malaria testing via rapid diagnostic tests and treatment in villages with the highest burden of malaria incidence based on surveillance data from health facilities. We used a difference-in-differences quasi-experimental design with linear probability models and two waves of cross-sectional household surveys to assess the impact of 1,7-mRCTR on malaria prevalence. We conducted sensitivity analyses to assess the robustness of our results, examined how intervention effects varied in subgroups, and explored alternative explanations for the observed results. RESULTS: Between October 2019 and September 2021, 244,771 community-based malaria rapid tests were completed in intervention areas, and each intervention village received an average of 3.85 rounds of 1-7mRCTR. Malaria prevalence declined from 27.4% at baseline to 11.7% at endline in the intervention areas and from 26.0% to 16.0% in the control areas. 1,7-mRCTR was associated with a 4.5-percentage-point decrease in malaria prevalence (95% confidence interval: - 0.067, - 0.023), equivalent to a 17% reduction from the baseline. In Rufiji, a district characterized by lower prevalence and where larviciding was additionally provided, 1,7-mRCTR was associated with a 63.9% decline in malaria prevalence. CONCLUSIONS: The 1,7-mRCTR approach reduced malaria prevalence. Despite implementation interruptions due to the COVID-19 pandemic and supply chain challenges, the study provided novel evidence on the effectiveness of community-based reactive approaches in moderate- to high-endemicity areas and demonstrated the potential of South-South cooperation in tackling global health challenges.


Subject(s)
Malaria , Pandemics , Humans , Prevalence , Tanzania/epidemiology , Cross-Sectional Studies , Pilot Projects , Malaria/epidemiology , Malaria/prevention & control
3.
Malar J ; 22(1): 293, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789435

ABSTRACT

BACKGROUND: Strengthening malaria control activities in Tanzania has dramatically declined human malaria infections. However, there is an increasing epidemiological shift in the burden on school-age children. The underlying causes for such an epidemiological shift remain unknown in this context. This study explored activities and behaviours that could increase the vulnerability of school-age children to transmission risk to provide insight into protection gap with existing interventions and opportunities for supplementary interventions. METHODS: This cross-sectional study conducted twenty-four focus group discussions (FGDs) in three districts of Rufiji, Kibiti and Kilwa in south-eastern Tanzania. Sixteen FGDs worked with school-age children (13 to 18 years) separating girls and boys and eight FGDs with their parents in mixed-gender groups. A total of 205 community members participated in FGDs across the study area. Of them, 72 participants were parents, while 133 were school-age children (65 boys and 68 girls). RESULTS: Routine domestic activities such as fetching water, washing kitchen utensils, cooking, and recreational activities such as playing and watching television and studying were the reported activities that kept school-age children outdoors early evening to night hours (between 18:00 and 23:00). Likewise, the social and cultural events including initiation ceremonies and livelihood activities also kept this age group outdoors from late evening to early night and sometimes past midnight hours. Parents migrating to farms from December to June, leaving behind school-age children unsupervised affecting their net use behaviour plus spending more time outdoors at night, and the behaviour of children sprawling legs and hands while sleeping inside treated bed nets were identified as potential risks to infectious mosquito bites. CONCLUSION: The risky activities, behaviours, and social events mostly occurring outdoors might increase school-age children's vulnerability to malaria infections. The findings provide preliminary insight on potential risk factors for persisting transmission. Further studies to quantify the risk behaviour and activities are recommended to establish the magnitude and anticipated impact on supplementary control strategies to control infection in school-age children.


Subject(s)
Malaria , Male , Female , Humans , Child , Adolescent , Tanzania/epidemiology , Cross-Sectional Studies , Malaria/epidemiology , Malaria/prevention & control , Risk-Taking , Sleep , Mosquito Control
4.
Parasit Vectors ; 15(1): 420, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369172

ABSTRACT

BACKGROUND: Estimating human exposure to mosquito vectors is crucial for the prediction of malaria transmission and intervention impact. The human landing catch method is frequently used to directly measure estimate exposure rates; however, there has been an increasing shift from this method to exposure-free alternatives, such as the mosquito electrocuting traps (MET) and other approaches. While these latter methods can provide robust and representative values of human exposure and mosquito density, they often still require a human volunteer, which poses logistical challenges. Additionally, in the case of the MET, the early MET prototype (METe) required human volunteers to wear protective clothing that could be uncomfortable. We investigated two alternative trapping approaches to address these challenges by comparing the performance of the METe prototype to: (i) a modified caged MET prototype that offers full protection to users (METc) and (ii) a barrier screen trap (BST) designed to passively sample (host-seeking and blood-fed) mosquitoes outdoors without requiring a human participant. METHODS: The relative performance of the METe, METc and BST were evaluated in a 3 × 3 Latin square field experiment design conducted in south-eastern Tanzania over 12 nights of sampling. The outcomes of interest were the nightly catch of mosquitoes and biting time estimates. RESULTS: The METc and BST caught similar numbers of An. arabiensis as the METe (relative ratio [RR] = 0.76, 95% confidence interval [CI]: 0.42-1.39, P = 0.38 and RR = 1.13, 95% CI: 0.63-2.04, P = 0.69, respectively). Similarly, the METc and BST caught similar numbers of Culex spp. as the METe (RR = 0.87, 95% CI: 0.62-1.22, P = 0.42 and RR = 0.80, 95% CI: 0.57-1.12, P = 0.199, respectively). All three trapping methods indicated a similar pattern of biting activity by An. arabiensis and Culex spp., characterized by biting starting in the early evening (18:00-22:00), peaking when people are typically sleeping (22:00-05:00) and dropping off drastically toward the morning (05:00-07:00). CONCLUSIONS: The modifications made to the METe design to improve user comfort and remove the need for protective clothing did not result in an underestimation of mosquito vector abundance nor misrepresentation of their biting time pattern. We recommend the METc for use over the METe design. Similarly, the BST demonstrated potential for monitoring malaria and filariasis vector densities in Tanzania.


Subject(s)
Anopheles , Culex , Filariasis , Malaria , Nematode Infections , Animals , Humans , Tanzania , Mosquito Vectors , Malaria/prevention & control , Phenotype , Mosquito Control/methods
5.
Malar J ; 19(1): 418, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33218346

ABSTRACT

BACKGROUND: Host preference is a critical determinant of human exposure to vector-borne infections and the impact of vector control interventions. Widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) across sub-Saharan Africa, which protect humans against mosquitoes, may select for altered host preference traits of malaria vectors over the long term. Here, the host preferences of Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) were experimentally assessed in the field, using direct host-preference assays in two distinct ecological settings in Tanzania. METHODS: Eight Ifakara Tent Trap (ITT), four baited with humans and four with bovine calves, were simultaneously used to catch malaria vectors in open field sites in urban and rural Tanzania. The numbers of mosquitoes collected in human-baited traps versus calf-baited traps were used to estimate human feeding preference for each site's vector species. RESULTS: The estimated proportion [95% confidence interval (CI)] of mosquitoes attacking humans rather than cattle was 0.60 [0.40, 0.77] for An. arabiensis in the rural setting and 0.61 [0.32, 0.85] for An. gambiae s.s. in the urban setting, indicating no preference for either host in both cases (P = 0.32 and 0.46, respectively) and no difference in preference between the two (Odds Ratio (OR) [95%] = 0.95 [0.30, 3.01], P = 0.924). However, only a quarter of An. arabiensis in the urban setting attacked humans (0.25 [0.09, 0.53]), indicating a preference for cattle that approached significance (P = 0.08). Indeed, urban An. arabiensis were less likely to attack humans rather than cattle when compared to the same species in the rural setting (OR [95%] = 0.21 [0.05, 0.91], P = 0.037). CONCLUSION: Urban An. arabiensis had a stronger preference for cattle than the rural population and urban An. gambiae s.s. showed no clear preference for either humans or cattle. In the urban setting, both species exhibited stronger tendencies to attack cattle than previous studies of the same species in rural contexts. Cattle keeping may, therefore, particularly limit the impact of human-targeted vector control interventions in Dar es Salaam and perhaps in other African towns and cities.


Subject(s)
Anopheles/physiology , Mosquito Vectors/physiology , Animals , Feeding Behavior , Humans , Insect Bites and Stings/epidemiology , Malaria/transmission , Tanzania/epidemiology , Urban Population/statistics & numerical data
6.
Malar J ; 19(1): 292, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32799857

ABSTRACT

BACKGROUND: In 2015, a China-UK-Tanzania tripartite pilot project was implemented in southeastern Tanzania to explore a new model for reducing malaria burden and possibly scaling-out the approach into other malaria-endemic countries. The 1,7-malaria Reactive Community-based Testing and Response (1,7-mRCTR) which is a locally-tailored approach for reporting febrile malaria cases in endemic villages was developed to stop transmission and Plasmodium life-cycle. The (1,7-mRCTR) utilizes existing health facility data and locally trained community health workers to conduct community-level testing and treatment. METHODS: The pilot project was implemented from September 2015 to June 2018 in Rufiji District, southern Tanzania. The study took place in four wards, two with low incidence and two with a higher incidence. One ward of each type was selected for each of the control and intervention arms. The control wards implemented the existing Ministry of Health programmes. The 1,7-mRCTR activities implemented in the intervention arm included community testing and treatment of malaria infection. Malaria case-to-suspect ratios at health facilities (HF) were aggregated by villages, weekly to identify the village with the highest ratio. Community-based mobile test stations (cMTS) were used for conducting mass testing and treatment. Baseline (pre) and endline (post) household surveys were done in the control and intervention wards to assess the change in malaria prevalence measured by the interaction term of 'time' (post vs pre) and arm in a logistic model. A secondary analysis also studied the malaria incidence reported at the HFs during the intervention. RESULTS: Overall the 85 rounds of 1,7-mRCTR conducted in the intervention wards significantly reduced the odds of malaria infection by 66% (adjusted OR 0.34, 95% CI 0.26,0.44, p < 0001) beyond the effect of the standard programmes. Malaria prevalence in the intervention wards declined by 81% (from 26% (95% CI 23.7, 7.8), at baseline to 4.9% (95% CI 4.0, 5.9) at endline). In villages receiving the 1,7-mRCTR, the short-term case ratio decreased by over 15.7% (95% CI - 33, 6) compared to baseline. CONCLUSION: The 1,7-mRCTR approach significantly reduced the malaria burden in the areas of high transmission in rural southern Tanzania. This locally tailored approach could accelerate malaria control and elimination efforts. The results provide the impetus for further evaluation of the effectiveness and scaling up of this approach in other high malaria burden countries in Africa, including Tanzania.


Subject(s)
Communicable Disease Control/methods , Community Health Workers/statistics & numerical data , Health Facilities/statistics & numerical data , Malaria/prevention & control , Antimalarials/therapeutic use , Communicable Disease Control/statistics & numerical data , Incidence , Malaria/epidemiology , Malaria/parasitology , Pilot Projects , Prevalence , Rural Population/statistics & numerical data , Tanzania/epidemiology
7.
PLoS Negl Trop Dis ; 14(7): e0007278, 2020 07.
Article in English | MEDLINE | ID: mdl-32614855

ABSTRACT

BACKGROUND: The frequency and magnitude of dengue epidemics has increased dramatically throughout the tropics in the past 40 years due to unplanned urbanization, globalization and lack of effective mosquito control. The commercial capital of Tanzania, Dar es Salaam, is now experiencing regular dengue outbreaks. Three dengue serotypes have been detected in Dar es Salaam (DNV 1, 2 and 3). Without adequate vector monitoring and control, further outbreaks will certainly occur. METHODS/FINDINGS: A case series study followed 97 individuals with confirmed dengue fever (NS1 and/or IgM on rapid diagnostic test and/or PCR positive) to their households in Kinondoni, Dar es Salaam during the 2014 outbreak from a random sample of 202 confirmed cases at Mwananyamala Hospital. Kinondoni wards of Manzese, Mwananyamala, Tandale and Mabibo had the highest number of confirmed cases: 18, 13, 13 and 9 respectively. Individuals were interviewed by questionnaire on dengue prevention practices and houses were inspected for mosquito breeding sites to validate a Habitat Suitability Score (HSS). This is a tool devised to predict the productivity of any potential breeding habitats (PBHs) before the rains begin. There were 12 /312 positive Aedes breeding habitats. Drums/barrels, flowerpots and tyres were the most common breeding habitats. The HSS correctly identified 9/12 of Aedes breeding habitats. Larviciding is already conducted in urban Tanzania for malaria control and the HSS may be a useful means to train individuals on productive Aedes aegypti breeding sites should this program be extended to include dengue control. The population remains poorly informed about dengue transmission and prevention: 22% of respondents said dengue is spread from one person to another and 60% first heard about dengue when already sick. Less than 20% of respondents used personal protection and >80% thought bednets protected against dengue. Mobile phones were owned by almost all individuals followed up and have the potential of being the prime medium for dissemination of information on dengue prevention.


Subject(s)
Aedes , Dengue/prevention & control , Ecosystem , Health Knowledge, Attitudes, Practice , Mosquito Control , Adolescent , Adult , Aedes/physiology , Aged , Aged, 80 and over , Animals , Breeding , Dengue/epidemiology , Dengue/immunology , Family Characteristics , Female , Humans , Male , Middle Aged , Tanzania/epidemiology , Young Adult
8.
Malar J ; 19(1): 220, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32576180

ABSTRACT

BACKGROUND: Insecticide-treated nets (ITNs) and house modifications are proven vector control tools, yet in most regions, full coverage has not been achieved. This study investigates household factors associated with access to ITNs and house modification in Tanzania. METHODS: Baseline cross-sectional survey data from previous studies on spatial repellants and indoor residual spray evaluation was analysed from 6757 households in Bagamoyo (60 km north of Dar es Salaam) and 1241 households in Ulanga (a remote rural area in southeast Tanzania), respectively. Regression models were used to estimate the associations between the outcomes: population access to ITNs, access to ITN per sleeping spaces, window screens and closed eaves, and the covariates household size, age, gender, pregnancy, education, house size, house modification (window screens and closed eaves) and wealth. RESULTS: Population access to ITNs (households with one ITN per two people that stayed in the house the previous night of the survey) was 69% (n = 4663) and access to ITNs per sleeping spaces (households with enough ITNs to cover all sleeping spaces used the previous night of the survey) was 45% (n = 3010) in Bagamoyo, 3 years after the last mass campaign. These findings are both lower than the least 80% coverage target of the Tanzania National Malaria Strategic Plan (Tanzania NMSP). In Ulanga, population access to ITNs was 92% (n = 1143) and ITNs per sleeping spaces was 88% (n = 1093), 1 year after the last Universal Coverage Campaign (UCC). Increased household size was significantly associated with lower access to ITNs even shortly after UCC. House modification was common in both areas but influenced by wealth. In Bagamoyo, screened windows were more common than closed eaves (65% vs 13%), whereas in Ulanga more houses had closed eaves than window screens (55% vs 12%). CONCLUSION: Population access to ITNs was substantially lower than the targets of the Tanzania NMSP after 3 years and lower among larger households after 1 year following ITN campaign. House modification was common in both areas, associated with wealth. Improved access to ITNs and window screens through subsidies and Behaviour Change Communication (BCC) strategies, especially among large and poor households and those headed by people with a low level of education, could maximize the uptake of a combination of these two interventions.


Subject(s)
Family Characteristics , Housing/statistics & numerical data , Insecticide-Treated Bednets/supply & distribution , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Insecticide-Treated Bednets/statistics & numerical data , Male , Middle Aged , Tanzania , Young Adult
9.
Sci Adv ; 6(20): eaay5487, 2020 05.
Article in English | MEDLINE | ID: mdl-32426490

ABSTRACT

Yearly, a quarter billion people are infected and a half a million killed by the mosquito-borne disease malaria. Lack of real-time observational tools for continuously assessing the unperturbed mosquito flight activity in situ limits progress toward improved vector control. We deployed a high-resolution entomological lidar to monitor a half-kilometer static transect adjacent to a Tanzanian village. We evaluated one-third million insect observations during five nights, four days, and one annular solar eclipse. We demonstrate in situ lidar classification of several insect families and their sexes based on their modulation signatures. We were able to compare the fine-scale spatiotemporal activity patterns of malaria vectors during ordinary days and an eclipse to disentangle phototactic activity patterns from the circadian mechanism. We observed an increased insect activity during the eclipse attributable to mosquitoes. These unprecedented findings demonstrate how lidar-based monitoring of distinct mosquito activities could advance our understanding of vector ecology.


Subject(s)
Anopheles , Malaria , Animals , Humans , Mosquito Vectors
11.
BMJ Open ; 9(4): e025079, 2019 04 20.
Article in English | MEDLINE | ID: mdl-31005914

ABSTRACT

OBJECTIVE: To assess pathways and associated costs of seeking care from the onset of symptoms to diagnosis in patients with confirmed and presumptive tuberculosis (TB). DESIGN: Cross-sectional study. SETTING: District hospital in Dar es Salaam, Tanzania. PARTICIPANTS: Bacteriologically confirmed TB and presumptive TB patients. PRIMARY AND SECONDARY OUTCOME MEASURES: We calculated distance in metres and visualised pathways to healthcare up to five visits for the current episode of sickness. Costs were described by medians and IQRs, with comparisons by gender and poverty status. RESULTS: Of 100 confirmed and 100 presumptive TB patients, 44% of confirmed patients sought care first at pharmacies after the onset of symptoms, and 42% of presumptive patients did so at hospitals. The median visits made by confirmed patients was 2 (range 1-5) and 2 (range 1-3) by presumptive patients. Patients spent a median of 31% of their monthly household income on health expenditures for all visits. The median total direct costs were higher in confirmed compared with presumptive patients (USD 27.4 [IQR 18.7-48.4] vs USD 19.8 [IQR 13.8-34.0], p=0.02), as were the indirect costs (USD 66.9 [IQR 35.5-150.0] vs USD 46.8 [IQR 20.1-115.3], p<0.001). The indirect costs were higher in men compared with women (USD 64.6 [IQR 31.8-159.1] vs USD 55.6 [IQR 25.1-141.1], p<0.001). The median total distance from patients' household to healthcare facilities for patients with confirmed and presumptive TB was 2338 m (IQR 1373-4122) and 2009 m (IQR 986-2976) respectively. CONCLUSIONS: Patients with confirmed TB have complex pathways and higher costs of care compared with patients with presumptive TB, but the costs of the latter are also substantial. Improving access to healthcare and ensuring integration of different healthcare providers including private, public health practitioners and patients themselves could help in reducing the complex pathways during healthcare seeking and optimal healthcare utilisation.


Subject(s)
Patient Acceptance of Health Care/statistics & numerical data , Tuberculosis/economics , Tuberculosis/therapy , Adult , Antibiotics, Antitubercular/therapeutic use , Cross-Sectional Studies , Female , Health Care Costs , Health Planning Guidelines , Humans , Male , Tanzania/epidemiology , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Young Adult
12.
Lancet Planet Health ; 3(3): e132-e143, 2019 03.
Article in English | MEDLINE | ID: mdl-30904112

ABSTRACT

BACKGROUND: In the city of Dar es Salaam, Tanzania, rapid and spontaneous scale-up of window screening occurred through purely horizontal commercial distribution systems without any public subsidies or promotion. Scale-up of window screening coincided with a planned evaluation of programmatic, vertically managed scale-up of regular larvicide application as an intervention against malaria vectors and transmission. We aimed to establish whether scale-up of window screening was associated with suppression of mosquito populations, especially for malaria vectors that strongly prefer humans as their source of blood. METHODS: This study was a re-analysis of a previous observational series of epidemiological data plus new analyses of previously partly reported complementary entomological data, from Dar es Salaam. Between 2004 and 2008, six rounds of cluster-sampled, rolling, cross-sectional parasitological and questionnaire surveys were done in urban Dar es Salaam to assess the effect of larviciding and other determinants of malaria risk, such as use of bed nets and antimalarial drugs, socioeconomic status, age, sex, travel history, mosquito-proofed housing, and spending time outdoors. The effects of scaled-up larvicide application and window screening were estimated by fitting generalised linear mixed models that allowed for both spatial variation between survey locations and temporal autocorrelation within locations. We also conducted continuous longitudinal entomological surveys of outdoor human biting rates by mosquitoes and experimental measurements of mosquito host preferences. FINDINGS: Best-fit models of Plasmodium falciparum malaria infection prevalence among humans were largely consistent with the results of the previous analyses. Re-analysis of previously reported epidemiological data revealed that most of the empirically fitted downward time trend in P falciparum malaria prevalence over the course of the study (odds ratio [OR] 0·04; 95% CI 0·03-0·06; p<0·0001), which was not previously reported numerically or attributed to any explanatory factor, could be plausibly explained by association with an upward trend in city-wide window screening coverage (OR 0·07; 0·05-0·09; p<0·0001) and progressive rollout of larviciding (OR 0·50; 0·41-0·60; p<0·0001). Increasing coverage of complete window screening was also associated with reduced biting densities of all taxonomic groups of mosquitoes (all p<0·0001), especially the Anopheles gambiae complex (relative rate [RR] 0·23; 95% CI 0·16-0·33) and Anopheles funestus group (RR 0·08; 0·04-0·16), which were confirmed as the most efficient vectors of malaria with strong preferences for humans over cattle. Larviciding was also associated with reduced biting densities of all mosquito taxa (p<0·0001), to an extent that varied consistently with the larvicide targeting scheme and known larval ecology of each taxon. INTERPRETATION: Community-wide mosquito proofing of houses might deliver greater impacts on vector populations and malaria transmission than previously thought. The spontaneous nature of the scale-up observed here is also encouraging with regards to practicality, acceptability, and affordability in low-income settings. FUNDING: United States Agency for International Development, Bill & Melinda Gates Foundation, Wellcome Trust, and Valent BioSciences LLC.


Subject(s)
Anopheles , Housing , Malaria/epidemiology , Mosquito Control , Mosquito Vectors , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Cities , Female , Humans , Infant , Infant, Newborn , Malaria/parasitology , Male , Middle Aged , Mosquito Control/instrumentation , Mosquito Control/methods , Population Density , Prevalence , Tanzania/epidemiology , Young Adult
13.
Malar J ; 17(1): 397, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30373574

ABSTRACT

BACKGROUND: Behaviour changes in mosquitoes from indoor to outdoor biting result in continuing risk of malaria from outdoor activities, including routine household activities and occasional social and cultural practices and gatherings. This study aimed to identify the range of social and cultural gatherings conducted outdoors and their associated risks for mosquito bites. METHODS: A cross-sectional study was conducted in four villages in the Kilombero Valley from November 2015 to March 2016. Observations, focus group discussions, and key informant interviews were conducted. The recorded data were transcribed and translated from Swahili to English. Thematic content analysis was used to identify perspectives on the importance of various social and cultural gatherings that incidentally expose people to mosquito bites and malaria infection. RESULTS: Religious, cultural and social gatherings involving the wider community are conducted outdoors at night till dawn. Celebrations include life course events, religious and cultural ceremonies, such as Holy Communion, weddings, gatherings at Easter and Christmas, male circumcision, and rituals conducted to please the gods and to remember the dead. These celebrations, at which there is minimal use of interventions to prevent bites, contribute to individual satisfaction and social capital, helping to maintain a cohesive society. Bed net use while sleeping outdoors during mourning is unacceptable, and there is minimal use of other interventions, such as topical repellents. Long sleeve clothes are used for protection from mosquito bites but provide less protection. CONCLUSION: Gatherings and celebrations expose people to mosquito bites. Approaches to prevent risks of mosquito bites and disease management need to take into account social, cultural and environmental factors. Area specific interventions may be expensive, yet may be the best approach to reduce risk of infection as endemic countries work towards elimination. Focusing on single interventions will not yield the best outcomes for malaria prevention as social contexts and vector behaviour vary.


Subject(s)
Cultural Characteristics , Human Activities , Insect Bites and Stings/prevention & control , Malaria/transmission , Mosquito Control/methods , Cross-Sectional Studies , Human Activities/psychology , Malaria/epidemiology , Malaria/prevention & control , Qualitative Research , Social Behavior , Tanzania/epidemiology
14.
Malar J ; 17(1): 292, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30103755

ABSTRACT

BACKGROUND: Malaria is an important public health problem in Tanzania. The latest national malaria data suggests rebound of the disease in the country. Anopheles arabiensis, a mosquito species renowned for its resilience against existing malaria vector control measures has now outnumbered the endophagic and anthrophilic Anopheles gambiae sensu stricto as the dominant vector. Vector control measures, prophylaxis and case management with artemisinin-based combination therapy (ACT) are the main control interventions. This paper presents and discusses the main findings from a baseline household survey that was conducted to determine malaria parasite prevalence and associated risk exposures prior to piloting the T3-initiative of World Health Organization integrated with Chinese malaria control experience aimed at additional reduction of malaria in the area. METHODS: The study was conducted from 4 sub-district divisions in Rufiji District, southern Tanzania: Ikwiriri, Kibiti, Bungu, and Chumbi. Malaria transmission is endemic in the area. It involved 2000 households that were randomly selected from a list of all households that had been registered from the area. Residents in sampled households were interviewed on a range of questions that included use of long-lasting insecticidal nets (LLINs) the night prior to the interview and indicators of socio-economic status. Blood drops were also collected on blood slides that were examined for malaria parasites using microscopes. RESULTS: The study observed an average malaria parasite prevalence of 13% across the selected site. Its distribution was 5.6, 12.8, 16.7, and 18% from Ikwiriri, Kibiti, Bungu, and Chumbi wards, respectively. The corresponding LLIN use discovered were 57.5% over the district. The highest usage was observed from Ikwiriri at 69.6% and the lowest from Bungu at 46.3%. A statistically significant variation in parasitaemia between socio-economic quintiles was observed from the study. Males were more parasitaemic than females (p value = 0.000). DISCUSSION AND CONCLUSION: The findings have been discussed in the light of results from Tanzania Demographic and Health Survey-Malaria Indicator Survey, 2015-2016 and other related studies, together with goals and targets set for malaria control. The paper also discusses the observed parasitaemia in relation to reported LLIN use and its distribution by some important factors as they were explored from the study. It has been concluded that malaria burden is now concentrated on the fringes of the settlements where the poorest section of the population is concentrated and LLIN usage is lower than the national average and targets set by national and global malaria control initiatives.


Subject(s)
Communicable Disease Control/organization & administration , Malaria/epidemiology , Adolescent , Adult , Aged , Animals , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Malaria/parasitology , Male , Middle Aged , Pilot Projects , Prevalence , Reference Values , Risk Factors , Rural Population/statistics & numerical data , Tanzania/epidemiology , Young Adult
15.
R Soc Open Sci ; 5(5): 161055, 2018 May.
Article in English | MEDLINE | ID: mdl-29892341

ABSTRACT

Geophysical topographic metrics of local water accumulation potential are freely available and have long been known as high-resolution predictors of where aquatic habitats for immature Anopheles mosquitoes are most abundant, resulting in elevated densities of adult malaria vectors and human infection burden. Using existing entomological and epidemiological survey data, here we illustrate how topography can also be used to map out the interfaces between wet, unoccupied valleys and dry, densely populated uplands, where malaria vector densities and infection risk are focally exacerbated. These topographically identifiable geophysical boundaries experience disproportionately high vector densities and malaria transmission risk, because this is where Anopheles mosquitoes first encounter humans when they search for blood after emerging or ovipositing in the valleys. Geophysical topographic indicators accounted for 67% of variance for vector density but for only 43% for infection prevalence, so they could enable very selective targeting of interventions against the former but not the latter (targeting ratios of 5.7 versus 1.5 to 1, respectively). So, in addition to being useful for targeting larval source management to wet valleys, geophysical topographic indicators may also be used to selectively target adult Anopheles mosquitoes with insecticidal residual sprays, fencing, vapour emanators or space sprays to barrier areas along their fringes.

16.
Geospat Health ; 12(1): 494, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28555474

ABSTRACT

This study investigated whether passively collected routine health facility data can be used for mapping spatial heterogeneities in malaria transmission at the level of local government housing cluster administrative units in Dar es Salaam, Tanzania. From June 2012 to January 2013, residential locations of patients tested for malaria at a public health facility were traced based on their local leaders' names and geo-referencing the point locations of these leaders' houses. Geographic information systems (GIS) were used to visualise the spatial distribution of malaria infection rates. Spatial scan statistics was deployed to detect spatial clustering of high infection rates. Among 2407 patients tested for malaria, 46.6% (1121) could be traced to their 411 different residential housing clusters. One small spatially aggregated cluster of neighbourhoods with high prevalence was identified. While the home residence housing cluster leader was unambiguously identified for 73.8% (240/325) of malaria-positive patients, only 42.3% (881/2082) of those with negative test results were successfully traced. It was concluded that recording simple points of reference during routine health facility visits can be used for mapping malaria infection burden on very fine geographic scales, potentially offering a feasible approach to rational geographic targeting of malaria control interventions. However, in order to tap the full potential of this approach, it would be necessary to optimise patient tracing success and eliminate biases by blinding personnel to test results.


Subject(s)
Health Facilities/statistics & numerical data , Malaria/epidemiology , Malaria/transmission , Geographic Information Systems , Humans , Prevalence , Tanzania/epidemiology
17.
Malar J ; 15: 135, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26931372

ABSTRACT

BACKGROUND: Malaria transmission, primarily mediated by Anopheles gambiae, persists in Dar es Salaam (DSM) despite high coverage with bed nets, mosquito-proofed housing and larviciding. New or improved vector control strategies are required to eliminate malaria from DSM, but these will only succeed if they are delivered to the minority of locations where residual transmission actually persists. Hotspots of spatially clustered locations with elevated malaria infection prevalence or vector densities were, therefore, mapped across the city in an attempt to provide a basis for targeting supplementary interventions. METHODS: Two phases of a city-wide population-weighted random sample of cross-sectional household surveys of malaria infections were complemented by two matching phases of geographically overlapping, high-resolution, longitudinal vector density surveys; spanning 2010-2013. Spatial autocorrelations were explored using Moran's I and hotspots were detected using flexible spatial scan statistics. RESULTS: Seven hotspots of spatially clustered elevated vector density and eight of malaria infection prevalence were detected over both phases. Only a third of vectors were collected in hotspots in phase 1 (30 %) and phase 2 (33 %). Malaria prevalence hotspots accounted for only half of malaria infections detected in phase 1 (55 %) and phase 2 (47 %). Three quarters (76 % in phase 1 and 74 % in phase 2) of survey locations with detectable vector populations were outside of hotspots. Similarly, more than half of locations with higher infection prevalence (>10 %) occurred outside of hotspots (51 % in phase 1 and 54 % in phase 2). Vector proliferation hazard (exposure to An. gambiae) and malaria infection risk were only very loosely associated with each other (Odds ratio (OR) [95 % Confidence Interval (CI)] = 1.56 [0.89, 1.78], P = 0.52)). CONCLUSION: Many small, scattered loci of local malaria transmission were haphazardly scattered across the city, so interventions targeting only currently identifiable spatially aggregated hotspots will have limited impact. Routine, spatially comprehensive, longitudinal entomological and parasitological surveillance systems, with sufficient sensitivity and spatial resolution to detect these scattered loci, are required to eliminate transmission from this typical African city. Intervention packages targeted to both loci and hotspots of transmission will need to suppress local vector proliferation, treat infected residents and provide vulnerable residents with supplementary protective measures against exposure.


Subject(s)
Anopheles/physiology , Insect Vectors/physiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Animals , Cluster Analysis , Cross-Sectional Studies , Humans , Plasmodium falciparum , Prevalence , Tanzania/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...