Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 24(8): 824-838, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159439

ABSTRACT

The study of extremophilic microorganisms has sparked interest in understanding extraterrestrial microbial life. Such organisms are fundamental for investigating life forms on Saturn's icy moons, such as Enceladus, which is characterized by potentially habitable saline and alkaline niches. Our study focused on the salt-alkaline soil of the Al Wahbah crater in Saudi Arabia, where we identified microorganisms that could be used as biological models to understand potential life on Enceladus. The search involved isolating 48 bacterial strains, sequencing the genomes of two thermo-haloalkaliphilic strains, and characterizing them for astrobiological application. A deeper understanding of the genetic composition and functional capabilities of the two novel strains of Halalkalibacterium halodurans provided valuable insights into their survival strategies and the presence of coding genes and pathways related to adaptations to environmental stressors. We also used mass spectrometry with a molecular network approach, highlighting various classes of molecules, such as phospholipids and nonproteinogenic amino acids, as potential biosignatures. These are essential features for understanding life's adaptability under extreme conditions and could be used as targets for biosignatures in upcoming missions exploring Enceladus' orbit. Furthermore, our study reinforces the need to look at new extreme environments on Earth that might contribute to the astrobiology field.


Subject(s)
Exobiology , Extraterrestrial Environment , Saudi Arabia , Exobiology/methods , Genome, Bacterial/genetics , Mars , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny
2.
iScience ; 26(12): 108374, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38162026

ABSTRACT

Most microorganisms found in environmental samples have never been cultured and can often only be explored through molecular or microscopic approaches. Here, we adapt the use of in situ diffusion-based devices to culture "yet-to-be-cultured" microorganisms associated with coral mucus and compare this with a traditional culturing method. The culturability of microorganisms associated with mucus of the coral Pocillopora damicornis increased by 420% and 570% with diffusion growth chambers and microwell chip devices, respectively, compared with the traditional method tested. The obtained cultures represent up to 64.4% of the total diversity of amplicon sequence variants (ASVs) found in the mucus of the coral P. damicornis. In addition, some previously uncultured microorganisms, such as members of the family Nitrosopumilaceae and halophilic/halotolerant bacteria were cultured. Our results validate alternative microbial culturing strategies to culture coral-associated microorganisms, while significantly increasing the culturability of previous microbial dark matter.

SELECTION OF CITATIONS
SEARCH DETAIL