Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Small Methods ; 8(1): e2300710, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37997223

ABSTRACT

An atmospheric-pressure plasma system is developed and is used to treat carbon nanotube assemblies, producing a hybrid carbon-zinc structure. This system is integrated into a floating-catalyst chemical vapor deposition furnace used for the synthesis of macroscopic assemblies of carbon nanotubes to allow for the in-line, continuous, and single-step production of nano-composite materials. Material is deposited from a sacrificial zinc wire in the form of nanoparticles and can coat the surface of the individual carbon nanotubes as they form. Additionally, it is found that the deposited materials penetrate further into the carbon nanotube matrix than a comparable post-synthesis deposition, improving the uniformity of the material through the thickness. Thus, a single-step metal-based coating and carbon nanotube synthesis process which can form the basis of production scale manufacturing of metal-carbon nanotube composite materials with an atmospheric-pressure plasma system are demonstrated.

2.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049324

ABSTRACT

Owing to their superior optical and thermal properties over conventional fluids, nanofluids represent an innovative approach for use as working fluids in direct-absorption solar collectors for efficient solar-to-thermal energy conversion. The application of nanofluids in direct-absorption solar collectors demands high-performance solar thermal nanofluids that exhibit exceptional physical and chemical stability over long periods and under a variety of operating, fluid dynamics, and temperature conditions. In this review, we discuss recent developments in the field of nanofluids utilized in direct-absorption solar collectors in terms of their preparation techniques, optical behaviours, solar thermal energy conversion performance, as well as their physical and thermal stability, along with the experimental setups and calculation approaches used. We also highlight the challenges associated with the practical implementation of nanofluid-based direct-absorption solar collectors and offer suggestions and an outlook for the future.

3.
Nanomaterials (Basel) ; 12(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35957139

ABSTRACT

Macroscopic ribbon-like assemblies of carbon nanotubes (CNTs) are functionalised using a simple direct-current-based plasma-liquid system, with oxygen and nitrogen functional groups being added. These modifications have been shown to reduce the contact angle of the ribbons, with the greatest reduction being from 84° to 35°. The ability to improve the wettability of the CNTs is of paramount importance for producing nanofluids, with relevance for a number of applications. Here, in particular, we investigate the efficacy of these samples as nanofluid additives for solar-thermal harvesting. Surface treatments by plasma-induced non-equilibrium electrochemistry are shown to enhance the stability of the nanofluids, allowing for full redispersion under simulated operating conditions. Furthermore, the enhanced dispersibility results in both a larger absorption coefficient and an improved thermal profile under solar simulation.

SELECTION OF CITATIONS
SEARCH DETAIL