Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
1.
Commun Integr Biol ; 17(1): 2406754, 2024.
Article in English | MEDLINE | ID: mdl-39351153

ABSTRACT

The bird of paradise plant is a clumping tropical species native to South Africa. It is a dramatic plant with distinctive iridescent orange and midnight blue flowers that resemble an exotic bird peeking out from the broad leaves in autumn, winter and spring. An experiment was conducted during the two seasons of 2021 and 2022 at a private farm in Damanhour, Beheira Governorate, Egypt (31"°" 04 "°"N, 30"°" 47' °E) to study the effect different concentrations of nano-potassium and chitosan and their combinations on the bird of Paradise (Sterlitiza reginae). The experiment was conducted in a randomized complete block in a split-plot design with five replicates; nano-potassium was used at 0, 100, 150, and 200 mg/l and assigned to the main plots, whereas the sub-plots involved 0, 0.25, 0.50 and 0.75 g/l of chitosan. An increase in plant height and leaf length was recorded when the plants were treated with 200 mg/l nano-potassium and 0.75 g/l chitosan. Spraying plants with concentrations of 150 mg/l nano-potassium and 0.75 g/l chitosan is associated with the superiority of S. reginae plants in other traits, such as leaves wide, number of leaves/plant, days to flowering, number of inflorescence/plant, number of florets/inflorescence, stalk length and diameter, inflorescence weight, longevity of inflorescence, and flowering period, compared to the other treatments. We conclude that adding nano-potassium and/or chitosan to the bird of paradise plant leads to an improvement in terms of vegetative and yield characteristics under newly reclaimed lands.

2.
Nanotoxicology ; : 1-16, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319754

ABSTRACT

Zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) are widely used in various industries due to their distinctive physico-chemical and biological properties. However, concerns have been raised about their potential toxicity in humans. While many studies have reviewed their effects on visceral organs upon ingestion, inhalation, or skin contact, limited reviews are available regarding their adverse consequences on the liver and kidneys resulting from intraperitoneal administration in rats. Hence, this systematic review is the first to uniquely address this issue. A systematic search was performed on PubMed and Google scholar to identify articles that explored the toxic effects of ZnO-NPs and NiO-NPs in rats following intraperitoneal injection. The quality of the articles was assessed using SYCLE's risk of bias tool, leading to the selection of 16 articles; 14 for ZnO-NPs, 1 for NiO-NPs and 1 for both NPs. This review revealed that ZnO-NPs induces an acute toxicity in liver and kidney that is dose dependent. The impairments were marked by changes in organs functional markers, lipid and glucose levels and antioxidant deficiencies and lipid peroxidation. NiO-NPs also showed considerable toxicity, despite the limited studies. Further, variability of physico-chemical properties among studies complicated the toxicity assessment. To conclude, this study provides a novel contribution by summarizing the literature findings that suggest potential adverse intraperitoneal hepatorenal toxic outcomes associated with ZnO-NPs and NiO-NPs. Future research should focus on long-term effects and standardizing protocols to ensure the safe use of ZnO-NPs and NiO-NPs in industrial and clinical practices.

3.
Int J Mol Sci ; 25(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39337576

ABSTRACT

The emergence of antibiotic-resistant Streptococcus pneumoniae necessitates the discovery of novel therapeutic agents. This study investigated the antimicrobial potential of green-synthesized gold nanoparticles (AuNPs) fabricated using Arthrospira platensis extract. Characterization using Fourier transform infrared spectroscopy revealed the presence of functional groups such as ketones, aldehydes, and carboxylic acids in the capping agents, suggesting their role in AuNP stabilization. Transmission electron microscopy demonstrated the formation of rod-shaped AuNPs with a mean diameter of 134.8 nm, as determined by dynamic light scattering, and a zeta potential of -27.2 mV, indicating good colloidal stability. The synthesized AuNPs exhibited potent antibacterial activity against S. pneumoniae, with a minimum inhibitory concentration (MIC) of 12 µg/mL, surpassing the efficacy of the control antibiotic, tigecycline. To elucidate the underlying mechanisms of action, an untargeted metabolomic analysis of the A. platensis extract was performed, identifying 26 potential bioactive compounds belonging to diverse chemical classes. In silico studies focused on molecular docking simulations revealed that compound 22 exhibited a strong binding affinity to S. pneumoniae topoisomerase IV, a critical enzyme for bacterial DNA replication. Molecular dynamics simulations further validated the stability of this protein-ligand complex. These findings collectively highlight the promising antimicrobial potential of A. platensis-derived AuNPs and their constituent compounds, warranting further investigation for the development of novel anti-pneumococcal therapeutics.


Subject(s)
Anti-Bacterial Agents , Gold , Metal Nanoparticles , Microbial Sensitivity Tests , Molecular Docking Simulation , Spirulina , Streptococcus pneumoniae , Streptococcus pneumoniae/drug effects , Gold/chemistry , Gold/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spirulina/chemistry , Metabolomics/methods
4.
BMC Vet Res ; 20(1): 428, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313796

ABSTRACT

BACKGROUND: Pigeons (Columba livia) are mainly raised as a source of animal protein, racing, leisure and as an experimental animal. The present study investigated the morphology of the esophagus in the young and adult domestic pigeon, Columba livia domestica. METHODS: Ten young and ten adult, normal, and healthy pigeons were collected from the local breeders. Samples from different parts of esophagus and crop were examined grossly, by stereomicroscopy, scanning and light microscopy. RESULTS: The esophagus consisted of a long cervical part, a crop, and a short thoracic part. The crop was represented by a thin-walled outpouching with two lateral diverticula. The mucosa presented wavy fine folds in the cervical esophagus, irregular folds in the lateral diverticula giving it a corrugated appearance, and prominent longitudinal folds with several gland openings in the middle and lower parts of the crop, as well as in the thoracic esophagus. The density of gland openings was higher in adult pigeons than that in young pigeons. The mucosa of the esophagus was lined by non-keratinized stratified squamous epithelium. The shape, height, and branching of the mucosal folds differed between young and adult pigeons. Mucous-secreting alveoli were detected in the middle part of the crop as well as in the thoracic esophagus, but not in the cervical esophagus or lateral diverticula of the crop. CONCLUSION: The variations between the young and adult pigeons suggest a functional adaptation of adult pigeons to their diet compared to young pigeons.


Subject(s)
Columbidae , Crop, Avian , Esophagus , Microscopy, Electron, Scanning , Animals , Columbidae/anatomy & histology , Esophagus/anatomy & histology , Esophagus/ultrastructure , Microscopy, Electron, Scanning/veterinary , Crop, Avian/anatomy & histology , Crop, Avian/ultrastructure , Male , Female , Aging
5.
Pharmaceuticals (Basel) ; 17(9)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39338288

ABSTRACT

The reaction of thiophene-2-carbohydrazide 1 or 5-bromothiophene-2-carbohydrazide 2 with various haloaryl isothiocyanates and subsequent cyclization by heating in aqueous sodium hydroxide yielded the corresponding 4-haloaryl-5-(thiophen-2-yl or 5-bromothiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 5a-e. The triazole derivatives 5a and 5b were reacted with different secondary amines and formaldehyde solution to yield the corresponding 2-aminomethyl-4-haloaryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones 6a-e, 7a-e, 8, 9, 10a and 10b in good yields. The in vitro antimicrobial activity of compounds 5a-e, 6a-e, 7a-d, 8, 9, 10a and 10b was evaluated against a panel of standard pathogenic bacterial and fungal strains. Compounds 5a, 5b, 5e, 5f, 6a-e, 7a-d, 8, 9, 10a and 10b showed marked activity, particularly against the tested Gram-positive bacteria and the Gram-negative bacteria Escherichia coli, and all the tested compounds were almost inactive against all the tested fungal strains. In addition, compounds 5e, 6a-e, 7a-d and 10a exhibited potent anti-proliferative activity, particularly against HepG-2 and MCF-7 cancer cell lines (IC50 < 25 µM). A detailed structural insight study based on the single crystals of compounds 5a, 5b, 6a, 6d and 10a is also reported. Molecular docking studies of the highly active antibacterial compounds 5e, 6b, 6d, 7a and 7d showed a high affinity for DNA gyrase. Meanwhile, the potent anti-proliferative activity of compounds 6d, 6e and 7d may be attributed to their high affinity for cyclin-dependent kinase 2 (CDK2).

6.
Pharmaceuticals (Basel) ; 17(9)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39338317

ABSTRACT

A series of novel thiazole-based chalcones were evaluated for their anticancer activity as potential tubulin polymerization inhibitors. In vitro anticancer screening for the thiazole derivatives 2a-2p exhibited broad-spectrum antitumor activity against various cancer cell lines particularly Ovar-3 and MDA-MB-468 cells with a GI50 range from 1.55 to 2.95 µΜ, respectively. Compound 2e demonstrated significant inhibition of tubulin polymerization, with an IC50 value of 7.78 µM compared to Combretastatin-A4 (CA-4), with an IC50 value of 4.93 µM. Molecular docking studies of compounds 2e, 2g, and 2h into tubulin further supported these findings, revealing that they bind effectively to the colchicine binding site, mirroring key interactions exhibited by CA-4. Computational predictions suggested favorable oral bioavailability and drug-likeness for these compounds, highlighting their potential for further development as chemotherapeutic agents.

7.
Chem Biodivers ; : e202402031, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284766

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a major contributor to hospital-acquired infections and is highly resistant to treatment. Ongoing research focuses on developing new antimicrobial medications to prevent the spread of resistance. A facile method was employed to efficiently synthesize new pyrazolo[1,5-a]pyrimidines in 84-93% yields by reacting 4-benzyl-1H-pyrazole-3,5-diamine with the respective α,ß-unsaturated ketones. The reaction was carried out in ethanol containing 1.2 equivalents of potassium hydroxide at reflux for 5-6 h. The new products are attached to a para-substituted aryl group with variable electronic properties at pyrazolopyrimidine-C5, in addition to one of three units at C7, namely phenyl, thiophen-2-yl, or furan-2-yl units. A wide spectrum of antibacterial activity was displayed by the new pyrimidines against six different bacterial strains. In general, pyrimidines attached to furan-2-yl units at C7, in addition to another aryl unit at C5, attached to 4-Me or 4-OMe groups, demonstrate significant antibacterial activity, particularly against S. aureus strain. They had MIC/MBC of 2.5/5.1 and 2.4/4.9 µM, respectively, which exceeded that of ciprofloxacin. Moreover, they demonstrate more effective MRSA inhibitory activity than linezolid, with MIC/MBC values up to 4.9/19.7 and 2.4/19.7 µM against MRSA ATCC:33591 and ATCC:43300 strains, respectively.

8.
Int J Biol Macromol ; 278(Pt 2): 134810, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39154676

ABSTRACT

The current study aimed to evaluate the hydrolysis of whole fat milk (WFM) and sweet whey (SW) using ß-galactosidase (ß-gal) after covalent immobilization onto activated alginate/tea waste (Alg/TW) beads as a novel carrier. The optimum temperature for free and Alg/TW/ß-gal was 40 °C and the ideal pH was 7.0. However, Alg/TW/ß-gal displayed better stabilities at high temperatures and a wide pH range. Additionally, the value of Km and Vmax for Alg/TW/ß-gal was higher than the free enzyme. The Alg/TW/ß-gal showed better residual activity (78.6 %) after 90 storage days at 4 °C. The reusability of Alg/TW/ß-gal was very good as it conserved its full activity after 15 consecutive cycles and conserved 93 % of its initial activity after 10 cycles with ONPG (O-nitrophenyl-ß-D-galactopyranoside) and lactose as a substrate, respectively. The impact of Alg/TW/ß-gal on WFM and SW using HPLC analysis revealed a remarkable decrease in lactose concentration and increase of glucose and galactose concentrations. The SW exhibited higher degree of lactose hydrolysis (97.3 %) compared to WFM (62.4 %). Besides, SW had a prominent increase in total phenolic content (96.8 mg/L) compared to WFM (54.3 mg/L). The antioxidant activity had increased after enzyme treatment in both WFM and SW. The GC-MS analysis for volatile compounds identified twenty-five flavour constituents. Finally, Alg/TW/ß-gal has a potential application for obtaining healthy, acceptable, and commercial dairy products of low lactose.


Subject(s)
Alginates , Enzyme Stability , Enzymes, Immobilized , beta-Galactosidase , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Alginates/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Dairy Products/analysis , Temperature , Whey/chemistry , Animals , Milk/chemistry , Lactose/chemistry , Kinetics
9.
Antibiotics (Basel) ; 13(8)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39200014

ABSTRACT

The 3D nanopatterned silica shells of diatoms have gained attention as drug delivery vehicles because of their high porosity, extensive surface area, and compatibility with living organisms. Tooth extraction may result in various complications, including impaired blood clotting, desiccation of the root canal, and infection. Therapeutic sponges that possess multiple properties, such as the ability to stop bleeding and kill bacteria, provide numerous advantages for the healing of the area where a tooth has been removed. This study involved the fabrication of a composite material with antibacterial and hemostatic properties for dental extraction sponges. We achieved this by utilizing the porous nature and hemostatic capabilities of diatom biosilica. The antibiotic used was doxycycline. The gelatin-based diatom biosilica composite with antibiotics had the ability to prevent bleeding and release the antibiotic over a longer time compared to gelatin sponge. These properties indicate its potential as a highly promising medical device for facilitating rapid healing following tooth extraction.

10.
Biomimetics (Basel) ; 9(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39194435

ABSTRACT

Microbial synthesis offers a sustainable and eco-friendly approach for nanoparticle production. This study explores the biogenic synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing the actinomycete Saccharopolyspora hirsuta (Ess_amA6) isolated from Tapinoma simrothi. The biosynthesized ZnO-NPs were characterized using various techniques to confirm their formation and properties. UV-visible spectroscopy revealed a characteristic peak at 372 nm, indicative of ZnO-NPs. X-ray diffraction (XRD) analysis confirmed the crystalline structure of the ZnO-NPs as hexagonal wurtzite with a crystallite size of approximately 37.5 ± 13.60 nm. Transmission electron microscopy (TEM) analysis showed the presence of both spherical and roughly hexagonal ZnO nanoparticles in an agglomerated state with a diameter of approximately 44 nm. The biogenic ZnO-NPs exhibited promising biomedical potential. They demonstrated selective cytotoxic activity against human cancer cell lines, demonstrating higher efficacy against Hep-2 cells (IC50 = 73.01 µg/mL) compared to MCF-7 cells (IC50 = 112.74 µg/mL). Furthermore, the biosynthesized ZnO-NPs displayed broad-spectrum antimicrobial activity against both Pseudomonas aeruginosa and Staphylococcus aureus with clear zones of inhibition of 12.67 mm and 14.33 mm, respectively. The MIC and MBC values against P. aeruginosa and S. aureus ranged between 12.5 and 50 µg/mL. These findings suggest the potential of S. hirsuta-mediated ZnO-NPs as promising biocompatible nanomaterials with dual applications as antimicrobial and anticancer agents.

11.
Commun Biol ; 7(1): 1021, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164404

ABSTRACT

Paternal genome elimination (PGE) is an intriguing but poorly understood reproductive strategy in which females are typically diploid, but males lose paternal genomes. Paternal genome heterochromatin (PGH) occurs in arthropods with germline PGE, such as the mealybug, coffee borer beetles, and booklice. Here, we present evidence that PGH initially occurs during early embryo development at around 15 h post-mating (hpm) in the cotton mealybug, Phenacoccus solenopsis Tinsley. Transcriptome analysis followed by qPCR validation indicated that six histone lysine methyltransferase (KMT) genes are predominantly expressed in adult females. We knocked down these five genes through dsRNA microinjection. We found that downregulation of two KMT genes, PsEZH2-X1 and PsEHMT1, resulted in a decrease of heterochromatin-related methylations, including H3K27me1, H3K27me3, and H3K9me3 in the ovaries, fewer PGH male embryos, and reduced male offspring. For further confirmation, we obtained two strains of transgenic tobacco highly expressing dsRNA targeting PsEZH2-X1 and PsEHMT1, respectively. Similarly, fewer PGH embryos and fewer male offspring were observed when feeding on these transgenic tobacco plants. Overall, we present evidence that PsEZH2-X1 and PsEHMT1 have essential roles in male embryo survival by regulating PGH formation in cotton mealybugs.


Subject(s)
Embryonic Development , Hemiptera , Histone-Lysine N-Methyltransferase , Animals , Male , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Female , Embryonic Development/genetics , Hemiptera/genetics , Hemiptera/enzymology , Hemiptera/embryology , Insect Proteins/genetics , Insect Proteins/metabolism , Gene Expression Regulation, Developmental , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Plants, Genetically Modified/genetics
12.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201301

ABSTRACT

The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.


Subject(s)
Biodegradation, Environmental , Environmental Pollutants , Enzymes, Immobilized , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Environmental Pollutants/metabolism , Biocatalysis , Bacteria/enzymology
13.
Int J Mol Sci ; 25(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39201511

ABSTRACT

It has been shown that vertical transmission of the SARS-CoV-2 strain is relatively rare, and there is still limited information on the specific impact of maternal SARS-CoV-2 infection on vertical transmission. The current study focuses on a transcriptomics analysis aimed at examining differences in gene expression between placentas from mother-newborn pairs affected by COVID-19 and those from unaffected controls. Additionally, it investigates the in situ expression of molecules involved in placental inflammation. The Papa Giovanni XXIII Hospital in Bergamo, Italy, has recorded three instances of intrauterine transmission of SARS-CoV-2. The first two cases occurred early in the pandemic and involved pregnant women in their third trimester who were diagnosed with SARS-CoV-2. The third case involved an asymptomatic woman in her second trimester with a twin pregnancy, who unfortunately delivered two stillborn fetuses due to the premature rupture of membranes. Transcriptomic analysis revealed significant differences in gene expression between the placentae of COVID-19-affected mother/newborn pairs and two matched controls. The infected and control placentae were matched for gestational age. According to the Benjamani-Hochberg method, 305 genes met the criterion of an adjusted p-value of less than 0.05, and 219 genes met the criterion of less than 0.01. Up-regulated genes involved in cell signaling (e.g., CCL20, C3, MARCO) and immune response (e.g., LILRA3, CXCL10, CD48, CD86, IL1RN, IL-18R1) suggest their potential role in the inflammatory response to SARS-CoV-2. RNAscope® technology, coupled with image analysis, was utilized to quantify the surface area covered by SARS-CoV-2, ACE2, IL-1ß, IL-6, IL-8, IL-10, and TNF-α on both the maternal and fetal sides of the placenta. A non-statistically significant gradient for SARS-CoV-2 was observed, with a higher surface coverage on the fetal side (2.42 ± 3.71%) compared to the maternal side (0.74 ± 1.19%) of the placenta. Although not statistically significant, the surface area covered by ACE2 mRNA was higher on the maternal side (0.02 ± 0.04%) compared to the fetal side (0.01 ± 0.01%) of the placenta. IL-6 and IL-8 were more prevalent on the fetal side (0.03 ± 0.04% and 0.06 ± 0.08%, respectively) compared to the maternal side (0.02 ± 0.01% and 0.02 ± 0.02%, respectively). The mean surface areas of IL-1ß and IL-10 were found to be equal on both the fetal (0.04 ± 0.04% and 0.01 ± 0.01%, respectively) and maternal sides of the placenta (0.04 ± 0.05% and 0.01 ± 0.01%, respectively). The mean surface area of TNF-α was found to be equal on both the fetal and maternal sides of the placenta (0.02 ± 0.02% and 0.02 ± 0.02%, respectively). On the maternal side, ACE-2 and all examined interleukins, but not TNF-α, exhibited an inverse mRNA amount compared to SARS-CoV-2. On the fetal side, ACE-2, IL-6 and IL-8 were inversely correlated with SARS-CoV-2 (r = -0.3, r = -0.1 and r = -0.4, respectively), while IL-1ß and IL-10 showed positive correlations (r = 0.9, p = 0.005 and r = 0.5, respectively). TNF-α exhibited a positive correlation with SARS-CoV-2 on both maternal (r = 0.4) and fetal sides (r = 0.9) of the placenta. Further research is needed to evaluate the correlation between cell signaling and immune response genes in the placenta and the vertical transmission of SARS-CoV-2. Nonetheless, the current study extends our comprehension of the molecular and immunological factors involved in SARS-CoV-2 placental infection underlying maternal-fetal transmission.


Subject(s)
COVID-19 , Infectious Disease Transmission, Vertical , Placenta , Pregnancy Complications, Infectious , SARS-CoV-2 , Adult , Female , Humans , Infant, Newborn , Pregnancy , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Cytokines/metabolism , Cytokines/genetics , Gene Expression Profiling , Inflammation/genetics , Inflammation/immunology , Inflammation/virology , Placenta/immunology , Placenta/metabolism , Placenta/virology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , SARS-CoV-2/immunology , Transcriptome
14.
Front Vet Sci ; 11: 1419234, 2024.
Article in English | MEDLINE | ID: mdl-38993277

ABSTRACT

Background: Uterus didelphys is a rare congenital anomaly of the female reproductive tract characterized by a divided uterine cervix and body. It occurs due to abnormal development of the paramesonephric (Müllerian) duct. Different forms of uterus didelphys have been reported in several animal species, including bovine, equine, ewe, goat, swine, and bitch. However, there is no previous report that has documented a completely divided female genital tract in she-camel. Moreover, there is a lack of literature regarding this anomaly in animals. Therefore, the present study reports, for the first time, a rare case of a completely divided female genital tract in a she-camel. In addition, the existing relevant literature on uterus didelphys in different animal species is reviewed. Case presentation: A female reproductive tract of she-camel, approximately 10 years old, with a history of previous successful pregnancy, was brought to the anatomy department following the slaughtering of the animal. Initial examination revealed a normal reproductive tract consisting of two ovaries, two fallopian tubes, a uterus, and a vagina. A closer examination revealed a completely divided vagina, with an external os opened into each part of the vagina, as well as a divided uterine body and cervix. Intrauterine infusion of saline through one external os confirmed complete separation of uterine body and cervix. Conclusion: To the authors' knowledge, this is the first reported case of a completely divided female genital tract in a she-camel. This review summarizes the previous reports about uterus didelphys in farm animals.

15.
Diagn Microbiol Infect Dis ; 110(1): 116430, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996774

ABSTRACT

In December 2019, a number of subjects presenting with an unexplained pneumonia-like illness were suspected to have a link to a seafood market in Wuhan, China. Subsequently, this illness was identified as the 2019-novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the World Committee on Virus Classification. Since its initial identification, the virus has rapidly sperad across the globe, posing an extraordinary challenge for the medical community. Currently, the Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is considered the most reliable method for diagnosing SARS-CoV-2. This procedure involves collecting oro-pharyngeal or nasopharyngeal swabs from individuals. Nevertheless, for the early detection of low viral loads, a more sensitive technique, such as droplet digital PCR (ddPCR), has been suggested. Despite the high effectiveness of RT-PCR, there is increasing interest in utilizing highly trained dogs and electronic noses (eNoses) as alternative methods for screening asymptomatic individuals for SARS-CoV-2. These dogs and eNoses have demonstrated high sensitivity and can detect volatile organic compounds (VOCs), enabling them to distinguish between COVID-19 positive and negative individuals. This manuscript recapitulates the potential, advantages, and limitations of employing trained dogs and eNoses for the screening and control of SARS-CoV-2.


Subject(s)
COVID-19 , Electronic Nose , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/virology , Animals , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Humans , Reverse Transcriptase Polymerase Chain Reaction/methods , Dogs , Sensitivity and Specificity , Volatile Organic Compounds/analysis , COVID-19 Testing/methods , Working Dogs , COVID-19 Nucleic Acid Testing/methods
16.
ACS Appl Mater Interfaces ; 16(31): 40873-40880, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39078059

ABSTRACT

Lithium-rich antiperovskites promise to be a compelling class of high-capacity cathode materials due to the existence of both cationic and anionic redox activity. Little is however known about the effect of separating the electrochemical cationic process from the anionic process and the associated implications on the electrochemical performance. In this context, we report the electrochemical properties of the illustrative example of three different (Li2Fe)SO materials with a focus on separating cationic from anionic effects. With the high-voltage anionic process, an astonishing electrochemical capacity of around 400 mAh g-1 can initially be reached. Our results however identify the anionic process as the cause of poor cycling stability and demonstrate that the fading reported in previous literature is avoided by restricting to only the cationic processes. Following this path, our (Li2Fe)SO-BM500 shows strongly improved performance as indicated by constant electrochemical cycling over 100 cycles at a capacity of around 175 mAh g-1 at 1 C. Our approach also allows us to investigate the electrochemical performance of the bare antiperovskite phase excluding extrinsic activity from initial or cycling-induced impurity phases. Our results underscore that synthesis conditions are a critical determinant of electrochemical performance in lithium-rich antiperovskites, especially with regard to the amount of electrochemical secondary phases, while the particle size has not been found to be a crucial parameter. Overall, separating and understanding the effects of the cationic from the anionic redox activity in lithium-rich antiperovskites provides the route to further improve their performance in electrochemical energy storage.

17.
Int J Biol Macromol ; 277(Pt 2): 134058, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038576

ABSTRACT

A robust and stable carbonic anhydrase (CA) system is indispensable for effectively sequestering carbon dioxide to mitigate climate change. While microbial surface display technology has been employed to construct an economically promising cell-displayed CO2-capturing biocatalyst, the displayed CA enzymes were prone to inactivation due to their low stability in harsh conditions. Herein, drawing inspiration from biomineralized diatom frustules, we artificially introduced biosilica shell materials to the CA macromolecules displayed on Escherichia coli surfaces. Specifically, we displayed a fusion of CA and the diatom-derived silica-forming Sil3K peptide (CA-Sil3K) on the E. coli surface using the membrane anchor protein Lpp-OmpA linker. The displayed CA-Sil3K (dCA-Sil3K) fusion protein underwent a biosilicification reaction under mild conditions, resulting in nanoscale self-encapsulation of the displayed enzyme in biosilica. The biosilicified dCA-Sil3K (BS-dCA-Sil3K) exhibited improved thermal, pH, and protease stability and retained 63 % of its initial activity after ten reuses. Additionally, the BS-dCA-Sil3K biocatalyst significantly accelerated the CaCO3 precipitation rate, reducing the time required for the onset of CaCO3 formation by 92 % compared to an uncatalyzed reaction. Sedimentation of BS-dCA-Sil3K on a membrane filter demonstrated a reliable CO2 hydration application with superior long-term stability under desiccation conditions. This study may open new avenues for the nanoscale-encapsulation of enzymes with biosilica, offering effective strategies to provide efficient, stable, and economic cell-displayed biocatalysts for practical applications.


Subject(s)
Carbon Dioxide , Carbonic Anhydrases , Escherichia coli , Silicon Dioxide , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/genetics , Carbon Dioxide/metabolism , Carbon Dioxide/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Silicon Dioxide/chemistry , Biocatalysis , Enzyme Stability , Carbon Sequestration , Hydrogen-Ion Concentration , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry
18.
Biomimetics (Basel) ; 9(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39056866

ABSTRACT

In light of rising public health threats like antifungal and antimicrobial resistance, alongside the slowdown in new antimicrobial development, biomimetics have shown promise as therapeutic agents. Multidrug-resistant fungi pose significant challenges as they quickly develop resistance, making traditional antifungals less effective. Developing new antifungals is also complicated by the need to target eukaryotic cells without harming the host. This review examines biomimetic antifungal materials that mimic natural biological mechanisms for targeted and efficient action. It covers a range of agents, including antifungal peptides, alginate-based antifungals, chitosan derivatives, nanoparticles, plant-derived polyphenols, and probiotic bacteria. These agents work through mechanisms such as disrupting cell membranes, generating reactive oxygen species, and inhibiting essential fungal processes. Despite their potential, challenges remain in terms of ensuring biocompatibility, optimizing delivery, and overcoming potential resistance. Production scalability and economic viability are also concerns. Future research should enhance the stability and efficacy of these materials, integrate multifunctional approaches, and develop sophisticated delivery systems. Interdisciplinary efforts are needed to understand interactions between these materials, fungal cells, and the host environment. Long-term health and environmental impacts, fungal resistance mechanisms, and standardized testing protocols require further study. In conclusion, while biomimetic antifungal materials represent a revolutionary approach to combating multidrug-resistant fungi, extensive research and development are needed to fully realize their potential.

20.
Ann Saudi Med ; 44(3): 146-152, 2024.
Article in English | MEDLINE | ID: mdl-38853476

ABSTRACT

BACKGROUND: Femoral and tibial fractures may result in delayed union and nonunion, posing significant challenges in orthopedic practice. The Ilizarov technique has emerged as a promising solution for managing these complex cases. OBJECTIVES: Evaluate the radiographic and functional results of Ilizarov fixation in the treatment of nonunion of tibia and femur fractures. DESIGN: Retrospective. SETTINGS: Hospitals affiliated with a university hospital. PATIENTS AND METHODS: Patient demographics, fracture characteristics, and treatment details were analyzed for the period from October 2015 to September 2022 in patients who were treated for nonunion of the tibia and femur using the Ilizarov fixator. Clinical and radiological assessments were performed using the Association for the Study and Application of Methods of Ilizarov (ASAMI) criteria. The study focused on assessing the average duration for union and frame removal, bone results, successful union rates, and functional results using the ASAMI criteria, obtaining data from the existing medical records, spanning various medical facilities treating nonunion fractures. SAMPLE SIZE: 126 patients. RESULTS: The average duration for union and frame removal was 8 months, with excellent bone results observed in 60.32% of cases. Out of 126 patients, 118 achieved successful union, while there were 2 failure cases necessitating amputation (1.52%). Functional results revealed excellent outcomes in 39.68% of cases. Complications included pin tract infections, ankle and knee stiffness, and limb shortening. External fixation duration and infection eradication were consistent with previous research, emphasizing the technique's effectiveness. CONCLUSIONS: The Ilizarov technique proved highly effective in managing nonunion tibia and femur fractures, offering favorable outcomes in terms of union, infection control, pain relief, and functional recovery. While excellent bone outcomes do not guarantee optimal function, this method remains a reliable approach for complex cases. LIMITATIONS: Potential biases inherent in retrospective analyses and the need for further randomized controlled trials to comprehensively compare treatment modalities.


Subject(s)
Femoral Fractures , Fractures, Ununited , Ilizarov Technique , Tibial Fractures , Humans , Retrospective Studies , Tibial Fractures/surgery , Male , Female , Adult , Femoral Fractures/surgery , Fractures, Ununited/surgery , Middle Aged , Young Adult , Treatment Outcome , Radiography , Fracture Healing , Adolescent , Aged
SELECTION OF CITATIONS
SEARCH DETAIL