Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 81(7): 213, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847863

ABSTRACT

The antimalarial drug Mefloquine has demonstrated antifungal activity against growth and virulence factors of Candida albicans. The current study focused on the identification of Mefloquine's mode of action in C. albicans by performing cell susceptibility assay, biofilm assay, live and dead assay, propidium iodide uptake assay, ergosterol quantification assay, cell cycle study, and gene expression studies by RT-PCR. Mefloquine inhibited the virulence factors in C. albicans, such as germ tube formation and biofilm formation at 0.125 and 1 mg/ml, respectively. Mefloquine-treated cells showed a decrease in the quantity of ergosterol content of cell membrane in a concentration-dependent manner. Mefloquine (0.25 mg/ml) arrested C. albicans cells at the G2/M phase and S phase of the cell cycle thereby preventing the progression of the normal yeast cell cycle. ROS level was measured to find out oxidative stress in C. albicans in the presence of mefloquine. The study revealed that, mefloquine was found to enhance the ROS level and subsequently oxidative stress. Gene expression studies revealed that mefloquine treatment upregulates the expressions of SOD1, SOD2, and CAT1 genes in C. albicans. In vivo, the antifungal efficacy of mefloquine was confirmed in mice for systemic candidiasis and it was found that there was a decrease in the pathogenesis of C. albicans after the treatment of mefloquine in mice. In conclusion, mefloquine can be used as a repurposed drug as an alternative drug against Candidiasis.


Subject(s)
Antifungal Agents , Candida albicans , Candidiasis , Mefloquine , Virulence Factors , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/pathogenicity , Candida albicans/growth & development , Animals , Mefloquine/pharmacology , Mice , Virulence Factors/genetics , Virulence Factors/metabolism , Candidiasis/microbiology , Candidiasis/drug therapy , Biofilms/drug effects , Biofilms/growth & development , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Oxidative Stress/drug effects , Cell Cycle/drug effects , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Ergosterol/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
2.
J Antibiot (Tokyo) ; 74(5): 346-353, 2021 05.
Article in English | MEDLINE | ID: mdl-33469194

ABSTRACT

The increased resistance/tolerance of Candida infections to antimicrobial treatment can be attributed to biofilm-associated cells. A way to overcome this situation is to re-purpose non-anti-fungal drugs that could be active against fungi. We have explored the potential of a small library of eighteen non-antifungal drugs used in different human diseases. Candida albicans was cultured in the presence and absence of different concentrations of these drugs. Subsequently, inhibition of growth, germ tube formation, adhesion, and biofilm development were studied. Out of eighteen drug molecules, six showed a reduction in planktonic and biofilm growth in a dose-dependent manner and three drugs inhibited germ tube formation. This study shows the potential of non-antifungal drugs for the development of new anti-Candida agents.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Antifungal Agents/administration & dosage , Biofilms/growth & development , Candida albicans/physiology , Microbial Sensitivity Tests
3.
Mycology ; 12(1): 25-38, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33628606

ABSTRACT

Most of the yeast bypasses the developmental stage from simple unicellular yeast to elongated structure like hyphae. Regulation of this transition is governed by various quorum sensing and signalling molecules produced under different conditions of growth, that differ significantly, both physiologically and chemically. The evidence of fungal quorum sensing was uncovered ten years ago after the discovery of farnesol as first eukaryotic quorum sensing molecules in Candida albicans. In addition to farnesol, tyrosol was identified as second quorum sensing molecules in C. albicans controlling physiological activities. After the discovery of farnesol and tyrosol, regulation of morphogenesis through the production of chemical signalling molecules such as isoamyl alcohol, 2-phenylethyl alcohol, 1-dodecanol, E-nerolidol, etc. is reported in C. albicans. Some of the evidence suggests that the budding yeast Saccharomyces cerevisiae exhibits this type of regulation and the signals are regulated by aromatic alcohols which are the end product of amino acid metabolism. The effects of these molecules on morphogenesis are not similar in both yeasts, making comparisons hard. It is hypothesized that these signals works in microorganisms to derive a competitive advantage. Here, we present an example for utilization of competitive strategy by C. albicans and S. cerevisiae over other microorganisms.

4.
Saudi J Biol Sci ; 19(4): 405-26, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23961203

ABSTRACT

Indoor environments play important roles in human health. The health hazards posed by polluted indoor environments include allergy, infections and toxicity. Life style changes have resulted in a shift from open air environments to air tight, energy efficient, environments, in which people spend a substantial portion of their time. Most indoor air pollution comes from the hazardous non biological agents and biological agents. Fungi are ubiquitous in distribution and are a serious threat to public health in indoor environments. In this communication, we have reviewed the current status on biotic indoor air pollution, role of fungi as biological contaminants and their impact on human health.

5.
Phytomedicine ; 15(4): 292-300, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17350239

ABSTRACT

Chemoprofile of Taverniera cuneifolia (Roth) Arn. a wild relative of commercial licorice (Glycyrrhiza glabra L) is presented. Both T. cuneifolia and G. glabra L were found to be very similar phytochemically. At least eighteen chromatophores were found similar in both the plants including the sweetening principle, glycyrrhizin. The extracts of T. cuneifolia root, exhibited promising anti-inflammatory, anti-tumor, anti germ tube formation (in Candida albicans), protection from mutagen toxicity and cytotoxic activities comparable to that of G. glabra. In general, the results suggest that T. cuneifolia could be used as substitute of G. glabra.


Subject(s)
Anti-HIV Agents/analysis , Anti-Inflammatory Agents/analysis , Glycyrrhiza/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Animals , Antifungal Agents/analysis , Antimutagenic Agents/analysis , Antineoplastic Agents/analysis , Candida albicans , Rats , Rats, Wistar , Salmonella typhimurium
SELECTION OF CITATIONS
SEARCH DETAIL
...