Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Ann Surg ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864230

ABSTRACT

OBJECTIVE: To evaluate the persistence of intestinal microbiome dysbiosis and gut-plasma metabolomic perturbations following severe trauma or sepsis weeks after admission in patients experiencing chronic critical illness (CCI). SUMMARY: Trauma and sepsis can lead to gut dysbiosis and alterations in the plasma and fecal metabolome. However, the impact of these perturbations and correlations between gut dysbiosis and the plasma metabolome in chronic critical illness have not been studied. METHODS: A prospective observational cohort study was performed with healthy subjects, severe trauma patients, patients with sepsis residing in an intensive care unit (ICU) for 2-3 weeks. A high-throughput multi-omics approach was utilized to evaluate the gut microbial and gut-plasma metabolite responses in critically ill trauma and sepsis patients 14-21 days after ICU admission. RESULTS: Patients in the sepsis and trauma cohorts demonstrated strikingly depleted gut microbiome diversity, with significant alterations and specific pathobiome patterns in the microbiota composition compared to healthy subjects. Further subgroup analyses based on sex revealed resistance to changes in microbiome diversity among female trauma patients compared to healthy counterparts. Sex-specific changes in fecal metabolites were also observed after trauma and sepsis, while plasma metabolite changes were similar in both males and females. CONCLUSIONS: Dysbiosis induced by trauma and sepsis persists up to 14-21 days after onset and is sex-specific, underscoring the implication of pathobiome and entero-septic microbial-metabolite perturbations in post-sepsis and post-trauma CCI. This indicates resilience to infection or injury in females' microbiome and should inform and facilitate future precision/personalized medicine strategies in the intensive care unit.

2.
Animal Model Exp Med ; 7(3): 367-376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860566

ABSTRACT

BACKGROUND: Severe trauma is associated with systemic inflammation and organ dysfunction. Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating severe human trauma. The aim of this study was to create a rat model of multicompartmental injury which recreates profound traumatic injury. METHODS: Male Sprague-Dawley rats were subjected to unilateral lung contusion and hemorrhagic shock (LCHS), multicompartmental polytrauma (PT) (unilateral lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), or naïve controls. Weight, plasma toll-like receptor 4 (TLR4), hemoglobin, spleen to body weight ratio, bone marrow (BM) erythroid progenitor (CFU-GEMM, BFU-E, and CFU-E) growth, plasma granulocyte colony-stimulating factor (G-CSF) and right lung histologic injury were assessed on day 7, with significance defined as p values <0.05 (*). RESULTS: Polytrauma resulted in markedly more profound inhibition of weight gain compared to LCHS (p = 0.0002) along with elevated plasma TLR4 (p < 0.0001), lower hemoglobin (p < 0.0001), and enlarged spleen to body weight ratios (p = 0.004). Both LCHS and PT demonstrated suppression of CFU-E and BFU-E growth compared to naïve (p < 0.03, p < 0.01). Plasma G-CSF was elevated in PT compared to both naïve and LCHS (p < 0.0001, p = 0.02). LCHS and PT demonstrated significant histologic right lung injury with poor alveolar wall integrity and interstitial edema. CONCLUSIONS: Multicompartmental injury as described here establishes a reproducible model of multicompartmental injury with worsened anemia, splenic tissue enlargement, weight loss, and increased inflammatory activity compared to a less severe model. This may serve as a more effective model to recreate profound traumatic injury to replicate the human inflammatory response postinjury.


Subject(s)
Anemia , Disease Models, Animal , Multiple Trauma , Rats, Sprague-Dawley , Shock, Hemorrhagic , Animals , Shock, Hemorrhagic/complications , Male , Anemia/etiology , Anemia/pathology , Multiple Trauma/complications , Multiple Trauma/pathology , Rats , Bone Marrow/pathology , Toll-Like Receptor 4/metabolism , Lung Injury/etiology , Lung Injury/pathology , Granulocyte Colony-Stimulating Factor/blood , Hemoglobins
3.
Surgery ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38760231

ABSTRACT

Precision and personalized medicine remain an elusive but illustrious goal in the realm of critical care, particularly in the areas of trauma and sepsis. These aims specifically refer to data gathering, interpretation, and treatment application on an individualized basis in the clinical care of patients. Until now, personalized medicine has mainly remained focused on genetics and epigenetic phenomena and has propelled clinical care forward, especially in the field of oncology. Advances in technology and methodology continue to proliferate in early-phase research, and some of these advancements are well poised to break into the clinical sphere of critical care. Here, we describe 2 topics at the forefront of investigation with potent and imminent potential for clinical application.

4.
Front Immunol ; 15: 1355405, 2024.
Article in English | MEDLINE | ID: mdl-38720891

ABSTRACT

Introduction: Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results: We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion: The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.


Subject(s)
Myeloid-Derived Suppressor Cells , Sepsis , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Humans , Sepsis/immunology , Transcriptome , Male , Female , Cell Differentiation/immunology , Gene Expression Profiling
5.
Shock ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38713581

ABSTRACT

ABSTRACT: Post-sepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness (CCI) with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and non-classical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types. Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNFα production based on clinical outcome. This may provide therapeutic targets for those at risk for CCI in order to improve their phenotype/endotype, morbidity, and long-term mortality.

6.
J Trauma Acute Care Surg ; 97(1): 65-72, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38480488

ABSTRACT

BACKGROUND: Previous preclinical studies have demonstrated sex-specific alterations in the gut microbiome following traumatic injury or sepsis alone; however, the impact of host sex on dysbiosis in the setting of postinjury sepsis acutely is unknown. We hypothesized that multicompartmental injury with subsequent pneumonia would result in host sex-specific dysbiosis. METHODS: Male and proestrus female Sprague-Dawley rats (n = 8/group) were subjected to either multicompartmental trauma (PT) (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), PT plus 2-hour daily restraint stress (PT/RS), PT with postinjury day 1 Pseudomonas aeruginosa pneumonia (PT-PNA), PT/RS with pneumonia (PT/RS-PNA), or naive controls. Fecal microbiome was measured on days 0 and 2 using high-throughput 16S rRNA sequencing and Quantitative Insights Into Microbial Ecology 2 bioinformatics analyses. Microbial α-diversity was assessed using Chao1 (number of different unique species) and Shannon (species richness and evenness) indices. ß-diversity was assessed using principal coordinate analysis. Significance was defined as p < 0.05. RESULTS: All groups had drastic declines in the Chao1 (α-diversity) index compared with naive controls ( p < 0.05). Groups PT-PNA and PT/RS-PNA resulted in different ß-diversity arrays compared with uninfected counterparts (PT, PT/RS) ( p = 0.001). Postinjury sepsis cohorts showed a loss of commensal bacteria along with emergence of pathogenic bacteria, with blooms of Proteus in PT-PNA and Escherichia-Shigella group in PT/RS-PNA compared with other cohorts. At day 2, PT-PNA resulted in ß-diversity, which was unique between males and females ( p = 0.004). Microbiome composition in PT-PNA males was dominated by Anaerostipes and Parasuterella , whereas females had increased Barnesiella and Oscillibacter . The PT/RS males had an abundance of Gastranaerophilales and Muribaculaceae . CONCLUSION: Multicompartmental trauma complicated by sepsis significantly diminishes diversity and alters microbial composition toward a severely dysbiotic state early after injury, which varies between males and females. These findings highlight the role of sex in postinjury sepsis and the pathobiome, which may influence outcomes after severe trauma and sepsis.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Rats, Sprague-Dawley , Animals , Female , Male , Rats , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Sex Factors , Disease Models, Animal , Sepsis/microbiology , Pneumonia/microbiology , Pneumonia/etiology
7.
Crit Care ; 28(1): 18, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212826

ABSTRACT

BACKGROUND: Sepsis and trauma are known to disrupt gut bacterial microbiome communities, but the impacts and perturbations in the fungal (mycobiome) community after severe infection or injury, particularly in patients experiencing chronic critical illness (CCI), remain unstudied. METHODS: We assess persistence of the gut mycobiome perturbation (dysbiosis) in patients experiencing CCI following sepsis or trauma for up to two-to-three weeks after intensive care unit hospitalization. RESULTS: We show that the dysbiotic mycobiome arrays shift toward a pathobiome state, which is more susceptible to infection, in CCI patients compared to age-matched healthy subjects. The fungal community in CCI patients is largely dominated by Candida spp; while, the commensal fungal species are depleted. Additionally, these myco-pathobiome arrays correlate with alterations in micro-ecological niche involving specific gut bacteria and gut-blood metabolites. CONCLUSIONS: The findings reveal the persistence of mycobiome dysbiosis in both sepsis and trauma settings, even up to two weeks post-sepsis and trauma, highlighting the need to assess and address the increased risk of fungal infections in CCI patients.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Sepsis , Humans , Dysbiosis/complications , Dysbiosis/microbiology , Candida , Bacteria , Sepsis/complications , Fungi
8.
J Trauma Acute Care Surg ; 96(1): 17-25, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37853556

ABSTRACT

INTRODUCTION: Pneumonia is a common complication after severe trauma that is associated with worse outcomes with increased mortality. Critically ill trauma patients also have persistent inflammation and bone marrow dysfunction that manifests as persistent anemia. Terminal erythropoiesis, which occurs in bone marrow structures called erythroblastic islands (EBIs), has been shown to be impacted by trauma. Using a preclinical model of polytrauma (PT) and pneumonia, we sought to determine the effect of infection on bone marrow dysfunction and terminal erythropoiesis. METHODS: Male and female Sprague-Dawley rats aged 9 to 11 weeks were subjected to either PT (lung contusion, hemorrhagic shock, cecectomy, and bifemoral pseudofracture) or PT with postinjury day 1 Pseudomonas pneumonia (PT-PNA) and compared with a naive cohort. Erythroblastic islands were isolated from bone marrow samples and imaged via confocal microscopy. Hemoglobin, early bone marrow erythroid progenitors, erythroid cells/EBI, and % reticulocytes/EBI were measured on day 7. Significance was defined as p < 0.05. RESULTS: Day 7 hemoglobin was significantly lower in both PT and PT-PNA groups compared with naive (10.8 ± 0.6 and 10.9 ± 0.7 vs. 12.1 ± 0.7 g/dL [ p < 0.05]). Growth of bone marrow early erythroid progenitors (colony-forming units-granulocyte, erythrocyte, monocyte, megakaryocyte; erythroid burst-forming unit; and erythroid colony-forming unit) on day 7 was significantly reduced in PT-PNA compared with both PT and naive. Despite a peripheral reticulocytosis following PT and PT-PNA, the percentage of reticulocytes/EBI was not different between naive, PT, and PT-PNA. However, the number of erythroblasts/EBI was significantly lower in PT-PNA compared with naive (2.9 ± 1.5 [ p < 0.05] vs. 8.9 ± 1.1 cells/EBI macrophage). In addition to changes in EBI composition, EBIs were also found to have significant structural changes following PT and PT-PNA. CONCLUSION: Multicompartmental PT altered late-stage erythropoiesis, and these changes were augmented with the addition of pneumonia. To improve outcomes following trauma and pneumonia, we need to better understand how alterations in EBI structure and function impact persistent bone marrow dysfunction and anemia.


Subject(s)
Anemia , Contusions , Multiple Trauma , Rats , Animals , Humans , Male , Female , Bone Marrow , Rats, Sprague-Dawley , Anemia/etiology , Contusions/complications , Hemoglobins , Multiple Trauma/complications , Erythropoiesis
9.
J Surg Res ; 293: 266-273, 2024 01.
Article in English | MEDLINE | ID: mdl-37804796

ABSTRACT

INTRODUCTION: Previous preclinical models of multicompartmental injury have investigated its effects for durations of less than 72 h and the long-term effects have not been defined. We hypothesized that a model of multicompartmental injury would result in systemic inflammation and multiorgan dysfunction that persists at 1 wk. METHODS: Male and proestrus female Sprague-Dawley rats (n = 16/group) underwent polytrauma (PT) (unilateral right lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofractures) and were compared to naive controls. Weight, hemoglobin, plasma neutrophil gelatinase-associated lipocalin, and plasma toll-like receptor 4 were evaluated on days two and seven. Bilateral lungs were sectioned, stained and assessed for injury at day seven. Comparisons were performed in Graphpad with significance defined as ∗P <0.05. RESULTS: Rats who underwent PT had significant weight loss and anemia at day 2 (P = 0.001) compared to naïve rats which persisted at day 7 (P = 0.001). PT rats had elevated plasma neutrophil gelatinase-associated lipocalin at day 2 compared to naïve (P <0.0001) which remained elevated at day 7 (P <0.0001). Plasma toll-like receptor 4 was elevated in PT compared to naïve at day 2 (P = 0.03) and day 7 (P = 0.01). Bilateral lungs showed significant injury in PT cohorts at day 7 compared to naïve (P <0.0004). PT males had worse renal function at day seven compared to females (P = 0.02). CONCLUSIONS: Multicompartmental trauma induces systemic inflammation and multiorgan dysfunction without recovery by day seven. However, females demonstrate improved renal recovery compared to males. Long-term assessment of preclinical PT models are crucial to better understand and evaluate future therapeutic immunomodulatory and anti-inflammatory treatments.


Subject(s)
Multiple Trauma , Shock, Hemorrhagic , Rats , Male , Female , Animals , Lipocalin-2 , Toll-Like Receptor 4 , Rats, Sprague-Dawley , Shock, Hemorrhagic/complications , Inflammation/etiology
10.
J Trauma Acute Care Surg ; 96(4): 548-556, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38151766

ABSTRACT

INTRODUCTION: Severe trauma disrupts bone marrow function and is associated with persistent anemia and altered hematopoiesis. Previously, plasma-derived exosomes isolated after trauma have been shown to suppress in vitro bone marrow function. However, the cargo contained in these vesicles has not been examined. We hypothesized that trauma plasma-derived exosomes exhibit microRNA (miRNA) changes that impact bone marrow function after severe injury. METHODS: Plasma was collected from a prospective cohort study of trauma patients (n = 15; 7 males, 8 females) with hip and/or femur fractures and an Injury Severity Score of ≥15; elective total hip arthroplasty (THA) patients (n = 8; 4 males, 4 females) served as operative controls. Exosomes were isolated from plasma with the Invitrogen Total Exosome Isolation Kit (Thermo Fisher Scientific, Waltham, MA), and RNA was isolated using a miRNeasy Mini Kit (Qiagen, Hilden, Germany). Direct quantification of miRNA was performed by NanoString Technologies on a human miRNA gene panel and analyzed with nSolver with significance defined as p < 0.05. RESULTS: There were no differences in age or sex distribution between trauma and THA groups; the average Injury Severity Score was 23. Trauma plasma-derived exosomes had 60 miRNA identities that were significantly downregulated and 3 miRNAs that were upregulated when compared with THA ( p < 0.05). Twelve of the downregulated miRNAs have a direct role in hematopoiesis regulation. Furthermore, male trauma plasma-derived exosomes demonstrated downregulation of 150 miRNAs compared with male THA ( p < 0.05). Female trauma plasma-derived exosomes demonstrated downregulation of only four miRNAs and upregulation of two miRNAs compared with female THA ( p < 0.05). CONCLUSION: We observed downregulation of 12 miRNAs linked to hematopoiesis along with sexual dimorphism in miRNA expression from plasma-derived exosomes following severe trauma. Understanding sexually dimorphic miRNA expression provides new insight into sex-based changes in postinjury systemic inflammation, immune system dysregulation, and bone marrow dysfunction and will aid us in more precise future potential therapeutic strategies. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level III.


Subject(s)
Exosomes , MicroRNAs , Humans , Male , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Prospective Studies , Bone Marrow , Exosomes/genetics , Exosomes/metabolism , Inflammation/metabolism
11.
Surg Infect (Larchmt) ; 24(9): 773-781, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37903014

ABSTRACT

Background: Severe trauma and hemorrhagic shock lead to persistent anemia. Although biologic gender is known to modulate inflammatory responses after critical illness, the impact of gender on anemia recovery after injury remains unknown. The aim of this study was to identify gender-specific differences in anemia recovery after critical illness. Materials and Methods: Male and proestrus female Sprague-Dawley rats (n = 8-9 per group) were subjected to lung contusion and hemorrhagic shock (LCHS) or LCHS with daily chronic stress (LCHS/CS) compared with naïve. Hematologic data, bone marrow progenitor growth, and bone marrow and liver gene transcription were analyzed on day seven. Significance was defined as p < 0.05. Results: Males lost substantial weight after LCHS and LCHS/CS compared with naïve males, while female LCHS rats did not compared with naive counterparts. Male LCHS rats had a drastic decrease in hemoglobin from naïve males. Male LCHS/CS rats had reduced colony-forming units-granulocyte, -erythrocyte, -monocyte, -megakaryocyte (CFU-GEMM) and burst-forming unit-erythroid (BFU-E) when compared with female counterparts. Naïve, LCHS, and LCHS/CS males had lower serum iron than their respective female counterparts. Liver transcription of BMP4 and BMP6 was elevated after LCHS and LCHS/CS in males compared with females. The LCHS/CS males had decreased expression of bone marrow pro-erythroid factors compared with LCHS/CS females. Conclusions: After trauma with or without chronic stress, male rats demonstrated increased weight loss, substantial decrease in hemoglobin level, dysregulated iron metabolism, substantial suppression of bone marrow erythroid progenitor growth, and no change in transcription of pro-erythroid factors. These findings confirm that gender is an important variable that impacts anemia recovery and bone marrow dysfunction after traumatic injury and shock in this rat model.


Subject(s)
Anemia , Contusions , Lung Injury , Shock, Hemorrhagic , Female , Rats , Male , Animals , Rats, Sprague-Dawley , Shock, Hemorrhagic/metabolism , Critical Illness , Lung Injury/metabolism , Contusions/metabolism , Hemoglobins , Iron , Lung
12.
Surgery ; 174(6): 1453-1462, 2023 12.
Article in English | MEDLINE | ID: mdl-37833155

ABSTRACT

BACKGROUND: Preclinical studies of the gut microbiome after severe traumatic injury have demonstrated severe dysbiosis in males, with sex-specific microbial differences up to 2 days after injury. However, the impact of host sex on injury-driven dysbiosis over time remains unknown. We hypothesized that sex-specific differences in intestinal microbiome diversity and composition after traumatic injury with and without stress would persist after 7 days. METHODS: Male and proestrus female Sprague-Dawley rats (n = 8/group) were subjected to either polytrauma (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofractures), polytrauma plus chronic restraint stress, or naïve controls. The fecal microbiome was measured on days 0, 3, and 7 using 16S rRNA sequencing and Quantitative Insights into Microbial Ecology bioinformatics analyses. Microbial alpha-diversity (Chao1 and Shannon indices) and beta-diversity were assessed. Analyses were performed in GraphPad and "R," with significance defined as P < .05. RESULTS: Polytrauma and polytrauma plus chronic restraint stress reduced alpha-diversity (Chao1, Shannon) within 3 days postinjury, which persisted up to day 7 in both sexes; polytrauma and polytrauma plus chronic restraint stress females had significantly decreased Chao1 compared to male counterparts at day 7 (P = .02). At day 7, the microbiome composition in polytrauma females had higher proportion of Mucispirillum, whereas polytrauma plus chronic restraint stress males demonstrated elevated abundance of Ruminococcus and Akkermansia. CONCLUSION: Multicompartmental trauma induces intestinal dysbiosis that is sex-specific with persistence of decreased diversity and unique "pathobiome" signatures in females after 1 week. These findings underline sex as an important biological variable that may influence variable host-specific responses and outcomes after severe trauma and critical illness. This underscores the need to consider precision medicine strategies to ameliorate these outcomes.


Subject(s)
Dysbiosis , Multiple Trauma , Female , Male , Rats , Animals , Rats, Sprague-Dawley , Dysbiosis/etiology , RNA, Ribosomal, 16S , Computational Biology
13.
Microorganisms ; 11(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37630549

ABSTRACT

The intestinal microbiome plays a critical role in host immune function and homeostasis. Patients suffering from-as well as models representing-multiple traumatic injuries, isolated organ system trauma, and various severities of traumatic injury have been studied as an area of interest in the dysregulation of immune function and systemic inflammation which occur after trauma. These studies also demonstrate changes in gut microbiome diversity and even microbial composition, with a transition to a pathobiome state. In addition, sex has been identified as a biological variable influencing alterations in the microbiome after trauma. Therapeutics such as fecal transplantation have been utilized to ameliorate not only these microbiome changes but may also play a role in recovery postinjury. This review summarizes the alterations in the gut microbiome that occur postinjury, either in isolated injury or multiple injuries, along with proposed mechanisms for these changes and future directions for the field.

15.
Shock ; 60(2): 272-279, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37310788

ABSTRACT

ABSTRACT: Background : Overall outcomes for trauma patients have improved over time. However, mortality for postinjury sepsis is unchanged. The use of relevant preclinical studies remains necessary to understand mechanistic changes after injury and sepsis at the cellular and molecular level. We hypothesized that a preclinical rodent model of multicompartmental injury with postinjury pneumonia and chronic stress would replicate inflammation and organ injury similar to trauma patients in the intensive care unit. Methods : Male and proestrus female Sprague-Dawley rats ( n = 16/group) were subjected to either polytrauma (PT) (lung contusion, hemorrhagic shock, cecectomy, and bifemoral pseudofracture), PT with daily chronic restraint stress (PT/CS), PT with postinjury day one Pseudomonas pneumonia (PT + PNA), PT/CS with pneumonia (PT/CS + PNA) or naive controls. Weight, white blood cell count, plasma toll-like receptor 4 (TLR4), urine norepinephrine (NE), hemoglobin, serum creatinine, and bilateral lung histology were evaluated. Results : PT + PNA and PT/CS + PNA groups lost more weight compared with those without sepsis (PT, PT/CS) and naive rats ( P < 0.03). Similarly, both PT + PNA and PT/CS + PNA had increased leukocytosis and plasma TLR4 compared with uninfected counterparts. Urine NE was elevated in PT + PNA and PT/CS + PNA compared with naive ( P < 0.03), with PT/CS + PNA exhibiting the highest levels. PT/CS + PNA exhibited worse acute kidney injury with elevated serum creatinine compared with PT/CS ( P = 0.008). PT/CS + PNA right and left lung injury scores were worse than PT + PNA ( P < 0.01). Conclusions : Sepsis, with postinjury pneumonia, induced significant systemic inflammation, organ dysfunction following polytrauma and chronic stress. Advanced animal models that replicate the critically ill human condition will help overcome the classic limitations of previous experimental models and enhance their translational value.


Subject(s)
Multiple Trauma , Pneumonia , Sepsis , Humans , Rats , Male , Female , Animals , Rats, Sprague-Dawley , Toll-Like Receptor 4 , Creatinine , Clinical Relevance , Multiple Trauma/complications , Inflammation
16.
Surgery ; 174(2): 214-221, 2023 08.
Article in English | MEDLINE | ID: mdl-37202309

ABSTRACT

BACKGROUND: Ergonomic development and awareness are critical to the long-term health and well-being of surgeons. Work-related musculoskeletal disorders affect an overwhelming majority of surgeons, and various operative modalities (open, laparoscopic, and robotic surgery) differentially affect the musculoskeletal system. Previous reviews have addressed various aspects of surgical ergonomic history or methods of ergonomic assessment, but the purpose of this study is to synthesize ergonomic analysis by surgical modality while discussing future directions of the field based on current perioperative interventions. METHODS: pubmed was queried for "ergonomics," "work-related musculoskeletal disorders," and "surgery," which returned 124 results. From the 122 English-language papers, a further search was conducted via the articles' sources for relevant literature. RESULTS: Ninety-nine sources were ultimately included. Work-related musculoskeletal disorders culminate in detrimental effects ranging from chronic pain and paresthesias to reduced operative time and consideration for early retirement. Underreporting symptoms and a lack of awareness of proper ergonomic principles substantially hinder the widespread utilization of ergonomic techniques in the operating room, reducing the quality of life and career longevity. Therapeutic interventions exist at some institutions but require further research and development for necessary widespread implementation. CONCLUSION: Awareness of proper ergonomic principles and the detrimental effects of musculoskeletal disorders is the first step in protecting against this universal problem. Implementing ergonomic practices in the operating room is at a crossroads, and incorporating these principles into everyday life must be a priority for all surgeons.


Subject(s)
Musculoskeletal Diseases , Occupational Diseases , Surgeons , Humans , Quality of Life , Occupational Diseases/etiology , Occupational Diseases/prevention & control , Ergonomics/methods , Musculoskeletal Diseases/epidemiology , Musculoskeletal Diseases/etiology , Musculoskeletal Diseases/prevention & control
17.
J Trauma Acute Care Surg ; 95(1): 30-38, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36872509

ABSTRACT

BACKGROUND: Previous preclinical studies have demonstrated an altered gut microbiome after traumatic injury; however, the impact of sex on dysbiosis remains unknown. We hypothesized that the "pathobiome" phenotype induced by multicompartmental injuries and chronic stress is host sex specific with unique microbiome signatures. METHODS: Male and proestrus female Sprague-Dawley rats (n = 8/group) aged 9 weeks to 11 weeks were subjected to either multicompartmental injury (PT) (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofractures), PT plus 2 hours daily chronic restraint stress (PT/CS) or naive controls. Fecal microbiome was measured on Days 0 and 2 using high-throughput 16S rRNA sequencing and Quantitative Insights Into Microbial Ecology bioinformatics analyses. Microbial alpha-diversity was assessed using Chao1 (number of different unique species) and Shannon (species richness and evenness) indices. Beta-diversity was assessed using principle coordinate analysis. Intestinal permeability was evaluated by plasma occludin and lipopolysaccharide binding protein. Histologic evaluation of ileum and colon tissues was scored for injury by a blinded pathologist. Analyses were performed in GraphPad and R, with significance defined as p < 0.05 between males versus females. RESULTS: At baseline, females had significantly elevated alpha-diversity (Chao1, Shannon indices) compared with males ( p < 0.05) which was no longer present 2 days postinjury in PT and PT/CS. Beta-diversity also differed significantly between males and females after PT ( p = 0.01). At Day 2, the microbial composition in PT/CS females was dominated by Bifidobacterium , whereas PT males demonstrated elevated levels of Roseburia ( p < 0.01). The PT/CS males had significantly elevated ileum injury scores compared with females ( p = 0.0002). Plasma occludin was higher in PT males compared with females ( p = 0.004); plasma lipopolysaccharide binding protein was elevated in PT/CS males ( p = 0.03). CONCLUSION: Multicompartmental trauma induces significant alterations in microbiome diversity and taxa, but these signatures differ by host sex. These findings suggest that sex is an important biological variable that may influence outcomes after severe trauma and critical illness.


Subject(s)
Gastrointestinal Microbiome , Rats , Animals , Male , Female , Rats, Sprague-Dawley , Occludin , RNA, Ribosomal, 16S , Lipopolysaccharides
18.
World J Emerg Surg ; 18(1): 21, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959585

ABSTRACT

BACKGROUND: Outcomes following aortic occlusion for trauma and hemorrhagic shock are poor, leading some to question the clinical utility of aortic occlusion in this setting. This study evaluates neurologically intact survival following resuscitative endovascular balloon occlusion of the aorta (REBOA) versus resuscitative thoracotomy at a center with a dedicated trauma hybrid operating room with angiographic capabilities. METHODS: This retrospective cohort analysis compared patients who underwent zone 1 aortic occlusion via resuscitative thoracotomy (n = 13) versus REBOA (n = 13) for blunt or non-thoracic, penetrating trauma and refractory hemorrhagic shock (systolic blood pressure less than 90 mmHg despite volume resuscitation) at a level 1 trauma center with a dedicated trauma hybrid operating room. The primary outcome was survival to hospital discharge. The secondary outcome was neurologic status at hospital discharge, assessed by Glasgow Coma Scale (GCS) scores. RESULTS: Overall median age was 40 years, 27% had penetrating injuries, and 23% had pre-hospital closed-chest cardiopulmonary resuscitation. In both cohorts, median injury severity scores and head-abbreviated injury scores were 26 and 2, respectively. The resuscitative thoracotomy cohort had lower systolic blood pressure on arrival (0 [0-75] vs. 76 [65-99], p = 0.009). Hemorrhage control (systolic blood pressure 100 mmHg without ongoing vasopressor or transfusion requirements) was obtained in 77% of all REBOA cases and 8% of all resuscitative thoracotomy cases (p = 0.001). Survival to hospital discharge was greater in the REBOA cohort (54% vs. 8%, p = 0.030), as was discharge with GCS 15 (46% vs. 0%, p = 0.015). CONCLUSIONS: Among patients undergoing aortic occlusion for blunt or non-thoracic, penetrating trauma and refractory hemorrhagic shock at a center with a dedicated, trauma hybrid operating room, nearly half of all patients managed with REBOA had neurologically intact survival. The high death rate in resuscitative thoracotomy and differences in patient cohorts limit direct comparison.


Subject(s)
Balloon Occlusion , Cardiopulmonary Resuscitation , Shock, Hemorrhagic , Thoracic Injuries , Humans , Adult , Shock, Hemorrhagic/surgery , Retrospective Studies , Operating Rooms , Thoracic Injuries/complications , Hemorrhage/complications
19.
J Vasc Surg Cases Innov Tech ; 9(2): 101084, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36970136

ABSTRACT

Objective: Chronic mesenteric ischemia (CMI) is a debilitating condition arising from intestinal malperfusion from mesenteric artery stenosis or occlusion. Mesenteric revascularization has been the standard of care but can result in substantial morbidity and mortality. Most of the perioperative morbidity has been secondary to postoperative multiple organ dysfunction, potentially from ischemia-reperfusion injury. The intestinal microbiome is a dense community of microorganisms in the gastrointestinal tract that help regulate pathways ranging from nutritional metabolism to the immune response. We hypothesized that patients with CMI will have microbiome perturbations that contribute to this inflammatory response and could potentially normalize in the postoperative period. Methods: We performed a prospective study of patients with CMI who had undergone mesenteric bypass and/or stenting from 2019 to 2020. Stool samples were collected at three time points: preoperatively at the clinic, perioperatively within 14 days after surgery, and postoperatively at the clinic at >30 days after revascularization. Stool samples from healthy controls were used for comparison. The microbiome was measured using 16S rRNA sequencing on an Illumina-MiSeq sequence platform and analyzed using the QIIME2 (quantitative insights into microbial ecology 2)-DADA2 bioinformatics pipeline with the Silva database. Beta-diversity was analyzed using a principal coordinates analysis and permutational analysis of variance. Alpha-diversity (microbial richness and evenness) was compared using the nonparametric Mann-Whitney U test. Microbial taxa unique to CMI patients vs controls were identified using linear discriminatory analysis effect size analysis. P < .05 was considered statistically significant. Results: Eight patients with CMI had undergone mesenteric revascularization (25% men; average age, 71 years). Nine healthy controls were also analyzed (78% men; average age, 55 years). Bacterial alpha-diversity (number of operational taxonomic units) was dramatically reduced preoperatively compared with that of the controls (P = .03). However, revascularization partially restored the species richness and evenness in the perioperative and postoperative phases. Beta-diversity was only different between the perioperative and postoperative groups (P = .03). Further analyses revealed increased abundance of Bacteroidetes and Clostridia taxa preoperatively and perioperatively compared with the controls, which was reduced during the postoperative period. Conclusions: The results from the present study have shown that patients with CMI have intestinal dysbiosis that resolves after revascularization. The intestinal dysbiosis is characterized by the loss of alpha-diversity, which is restored perioperatively and maintained postoperatively. This microbiome restoration demonstrates the importance of intestinal perfusion to sustain gut homeostasis and suggests that microbiome modulation could be a possible intervention to ameliorate acute and subacute postoperative outcomes in these patients.

20.
J Trauma Acute Care Surg ; 94(6): 814-822, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36727772

ABSTRACT

BACKGROUND: In traumatic hemorrhage, hybrid operating rooms offer near simultaneous performance of endovascular and open techniques, with correlations to earlier hemorrhage control, fewer transfusions, and possible decreased mortality. However, hybrid operating rooms are resource intensive. This study quantifies and describes a single-center experience with the complications, cost-utility, and value of a dedicated trauma hybrid operating room. METHODS: This retrospective cohort study evaluated 292 consecutive adult trauma patients who underwent immediate (<4 hours) operative intervention at a Level I trauma center. A total of 106 patients treated before the construction of a hybrid operating room served as historical controls to the 186 patients treated thereafter. Demographics, hemorrhage-control procedures, and financial data as well as postoperative complications and outcomes were collected via electronic medical records. Value and incremental cost-utility ratio were calculated. RESULTS: Demographics and severity of illness were similar between cohorts. Resuscitative endovascular occlusion of the aorta was more frequently used in the hybrid operating room. Hemorrhage control occurred faster (60 vs. 49 minutes, p = 0.005) and, in the 4- to 24-hour postadmission period, required less red blood cell (mean, 1.0 vs. 0 U, p = 0.001) and plasma (mean, 1.0 vs. 0 U, p < 0.001) transfusions. Complications were similar except for a significant decrease in pneumonia (7% vs. 4%, p = 0.008). Severe complications (Clavien-Dindo classification, ≥3) were similar. Across the patient admission, costs were not significantly different ($50,023 vs. $54,740, p = 0.637). There was no change in overall value (1.00 vs. 1.07, p = 0.778). CONCLUSION: The conversion of our standard trauma operating room to an endovascular hybrid operating room provided measurable improvements in hemorrhage control, red blood cell and plasma transfusions, and postoperative pneumonia without significant increase in cost. Value was unchanged. LEVEL OF EVIDENCE: Economic/Value-Based Evaluations; Level III.


Subject(s)
Endovascular Procedures , Operating Rooms , Adult , Humans , Retrospective Studies , Hemorrhage/etiology , Hemorrhage/therapy , Resuscitation/methods , Blood Transfusion , Endovascular Procedures/methods , Trauma Centers
SELECTION OF CITATIONS
SEARCH DETAIL
...