Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Death Dis ; 15(8): 609, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174513

ABSTRACT

Emerging studies support that the polycomb repressive complex 2 (PRC2) regulates phenotypic changes of carcinoma cells by modulating their shifts among metastable states within the epithelial and mesenchymal spectrum. This new role of PRC2 in cancer has been recently proposed to stem from the ability of its catalytic subunit EZH2 to bind and modulate the transcription of mesenchymal genes during epithelial-mesenchymal transition (EMT) in lung cancer cells. Here, we asked whether this mechanism is conserved in other types of carcinomas. By combining TGF-ß-mediated reversible induction of epithelial to mesenchymal transition and inhibition of EZH2 methyltransferase activity, we demonstrate that EZH2 represses a large set of mesenchymal genes and favours the residence of breast cancer cells towards the more epithelial spectrum during EMT. In agreement, analysis of human patient samples supports that EZH2 is required to efficiently repress mesenchymal genes in breast cancer tumours. Our results indicate that PRC2 operates through similar mechanisms in breast and lung cancer cells. We propose that PRC2-mediated direct transcriptional modulation of the mesenchymal gene expression programme is a conserved molecular mechanism underlying cell dissemination across human carcinomas.


Subject(s)
Breast Neoplasms , Enhancer of Zeste Homolog 2 Protein , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Cell Line, Tumor , Transforming Growth Factor beta/metabolism , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism
2.
Oncogene ; 41(28): 3611-3624, 2022 07.
Article in English | MEDLINE | ID: mdl-35680984

ABSTRACT

Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial-mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Enhancer of Zeste Homolog 2 Protein , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Cell Differentiation , Cell Line, Tumor , Cell Plasticity/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epithelial-Mesenchymal Transition/genetics , Humans , Lung Neoplasms/genetics , Polycomb-Group Proteins
3.
Life Sci Alliance ; 3(5)2020 05.
Article in English | MEDLINE | ID: mdl-32284355

ABSTRACT

Mammals optimize their physiology to the light-dark cycle by synchronization of the master circadian clock in the brain with peripheral clocks in the rest of the tissues of the body. Circadian oscillations rely on a negative feedback loop exerted by the molecular clock that is composed by transcriptional activators Bmal1 and Clock, and their negative regulators Period and Cryptochrome. Components of the molecular clock are expressed during early development, but onset of robust circadian oscillations is only detected later during embryogenesis. Here, we have used naïve pluripotent mouse embryonic stem cells (mESCs) to study the role of Bmal1 during early development. We found that, compared to wild-type cells, Bmal1-/- mESCs express higher levels of Nanog protein and altered expression of pluripotency-associated signalling pathways. Importantly, Bmal1-/- mESCs display deficient multi-lineage cell differentiation capacity during the formation of teratomas and gastrula-like organoids. Overall, we reveal that Bmal1 regulates pluripotent cell differentiation and propose that the molecular clock is an hitherto unrecognized regulator of mammalian development.


Subject(s)
ARNTL Transcription Factors/metabolism , Cell Differentiation/physiology , Mouse Embryonic Stem Cells/metabolism , ARNTL Transcription Factors/physiology , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Circadian Clocks/physiology , Circadian Rhythm/genetics , Feedback, Physiological/physiology , Gene Expression/genetics , Induced Pluripotent Stem Cells/cytology , Mice , Mouse Embryonic Stem Cells/cytology , Period Circadian Proteins/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL