Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotox Res ; 42(3): 29, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856796

ABSTRACT

Ethanol (EtOH) intake and noise exposure are particularly concerning among human adolescents because the potential to harm brain. Unfortunately, putative underlying mechanisms remain to be elucidated. Moreover, implementing non-pharmacological strategies, such as enriched environments (EE), would be pertinent in the field of neuroprotection. This study aims to explore possible underlying triggering mechanism of hippocampus-dependent behaviors in adolescent animals of both sexes following ethanol intake, noise exposure, or a combination of both, as well as the impact of EE. Adolescent Wistar rats of both sexes were subjected to an intermittent voluntary EtOH intake paradigm for one week. A subgroup of animals was exposed to white noise for two hours after the last session of EtOH intake. Some animals of both groups were housed in EE cages. Hippocampal-dependent behavioral assessment and hippocampal oxidative state evaluation were performed. Results show that different hippocampal-dependent behavioral alterations might be induced in animals of both sexes after EtOH intake and sequential noise exposure, that in some cases are sex-specific. Moreover, hippocampal oxidative imbalance seems to be one of the potential underlying mechanisms. Additionally, most behavioral and oxidative alterations were prevented by EE. These findings suggest that two frequently found environmental agents may impact behavior and oxidative pathways in both sexes in an animal model. In addition, EE resulted a partially effective neuroprotective strategy. Therefore, it could be suggested that the implementation of a non-pharmacological approach might also potentially provide neuroprotective advantages against other challenges. Finally, considering its potential for translational human benefit might be worth.


Subject(s)
Ethanol , Hippocampus , Noise , Rats, Wistar , Animals , Hippocampus/drug effects , Male , Female , Ethanol/administration & dosage , Ethanol/toxicity , Noise/adverse effects , Rats , Alcohol Drinking , Sex Characteristics , Oxidative Stress/drug effects , Oxidative Stress/physiology
2.
Brain Res ; 1679: 10-18, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29113737

ABSTRACT

Different physical or chemical agents, such as noise or alcohol, can induce diverse behavioral and biochemical alterations. Considering the high probability of young people to undergo consecutive or simultaneous exposures, the aim of the present work was to investigate in an animal model if noise exposure at early adolescence could induce hippocampal-related behavioral changes that might be modified after alcohol intake. Male Wistar rats (28-days-old) were exposed to noise (95-97 dB, 2 h). Afterwards, animals were allowed to voluntarily drink alcohol (10% ethanol in tap water) for three consecutive days, using the two-bottle free choice paradigm. After that, hippocampal-related memory and anxiety-like behavior tests were performed. Results show that whereas noise-exposed rats presented deficits in habituation memory, those who drank alcohol exhibited impairments in associative memory and anxiety-like behaviors. In contrast, exposure to noise followed by alcohol intake showed increases in exploratory and locomotor activities as well as in anxiety-like behaviors, unlike what was observed using each agent separately. Finally, lower levels of alcohol intake were measured in these animals when compared with those that drank alcohol and were not exposed to noise. Present findings demonstrate that exposure to physical and chemical challenges during early adolescence might induce behavioral alterations that could differ depending on the schedule used, suggesting a high vulnerability of rat developing brain to these socially relevant agents.


Subject(s)
Alcohol Drinking/physiopathology , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Hippocampus/drug effects , Memory Disorders/etiology , Noise/adverse effects , Animals , Animals, Newborn , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Rats , Rats, Wistar , Reaction Time/physiology
3.
Brain Res ; 1636: 52-61, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26851548

ABSTRACT

It has been previously shown that different extra-auditory alterations can be induced in animals exposed to noise at 15 days. However, data regarding exposure of younger animals, that do not have a functional auditory system, have not been obtained yet. Besides, the possibility to find a helpful strategy to restore these changes has not been explored so far. Therefore, the aims of the present work were to test age-related differences in diverse hippocampal-dependent behavioral measurements that might be affected in noise-exposed rats, as well as to evaluate the effectiveness of a potential neuroprotective strategy, the enriched environment (EE), on noise-induced behavioral alterations. Male Wistar rats of 7 and 15 days were exposed to moderate levels of noise for two hours. At weaning, animals were separated and reared either in standard or in EE cages for one week. At 28 days of age, different hippocampal-dependent behavioral assessments were performed. Results show that rats exposed to noise at 7 and 15 days were differentially affected. Moreover, EE was effective in restoring all altered variables when animals were exposed at 7 days, while a few were restored in rats exposed at 15 days. The present findings suggest that noise exposure was capable to trigger significant hippocampal-related behavioral alterations that were differentially affected, depending on the age of exposure. In addition, it could be proposed that hearing structures did not seem to be necessarily involved in the generation of noise-induced hippocampal-related behaviors, as they were observed even in animals with an immature auditory pathway. Finally, it could be hypothesized that the differential restoration achieved by EE rearing might also depend on the degree of maturation at the time of exposure and the variable evaluated, being younger animals more susceptible to environmental manipulations.


Subject(s)
Aging/physiology , Behavior, Animal/physiology , Environment , Noise/adverse effects , Analysis of Variance , Animals , Animals, Newborn , Auditory Pathways/physiology , Avoidance Learning/physiology , Exploratory Behavior/physiology , Female , Inhibition, Psychological , Male , Maze Learning/physiology , Rats , Rats, Wistar
4.
Pharmacol Res ; 109: 86-91, 2016 07.
Article in English | MEDLINE | ID: mdl-26657417

ABSTRACT

Noise coming from urban traffic, household appliances or discotheques might be as hazardous to the health of exposed people as occupational noise, because may likewise cause hearing loss, changes in hormonal, cardiovascular and immune systems and behavioral alterations. Besides, noise can affect sleep, work performance and productivity as well as communication skills. Moreover, exposure to noise can trigger an oxidative imbalance between reactive oxygen species (ROS) and the activity of antioxidant enzymes in different structures, which can contribute to tissue damage. In this review we systematized the information from reports concerning noise effects on cell oxidative balance in different tissues, focusing on auditory and non-auditory structures. We paid specific attention to in vivo studies, including results obtained in adult and developing subjects. Finally, we discussed the pharmacological strategies tested by different authors aimed to minimize the damaging effects of noise on living beings.


Subject(s)
Aging/physiology , Ear/physiology , Noise/adverse effects , Oxidative Stress , Animals , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL