Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123728, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38056182

ABSTRACT

Based on the DFT in a Wb97xd/6-311+G* level of theory, the interaction of thymine derivatives with Be12O12 and Ca12O12 nanocages was investigated. It was found that adsorption energies of thymine molecules on the Be12/Ca12-O12 surface was around -43.16, -60.06 and -29.62, -50.71, -45.95, -30.27 kcal/mol, for thymine (TH1), 1-amino thymine (TH2) and thymine glycol (TH3), respectively and this result supported the drug's adsorption. Additionally, according to the FMOs and MEP studies, a charge transfer from TH's to nanocages. Additionally, both molecular orbitals demonstrate that the LUMO and HOMO are primarily found on the BeO's surface.

2.
Appl Biochem Biotechnol ; 195(9): 5568-5582, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35666381

ABSTRACT

Urinary tract infections (UTIs) are among the most prevalent bacterial infections worldwide, with 11% of the global population getting infected every year. These infections are largely attributed to quorum sensing (QS)-dependent ability of pathogens to form biofilms in the urinary tract. Antimicrobial resistance is increasing, and the use of antimicrobial medicines in the future is yet uncertain. The desert medicinal plants have great potential to treat several diseases as per the available ethnobotanical database. Some of these plants have been used in folklore medicines to treat urinary tract infections also. There are many bioactive compounds derived from these desert medicinal plants that have been documented to possess antimicrobial as well as antibiofilm activity against uropathogens. The minimum biofilm inhibitory concentration (MBIC) of these plant extracts have been reported in the range of 31.5-250 µg/mL. The rising prevalence of drug-resistant diseases necessitates standardised modern analytical technologies to detect and isolate novel bioactive compounds from medicinal plants. This review seeks to combine the studies of desert plants with antimicrobial and anti-quorum sensing properties, supporting their sustainable use in treatment of urinary tract infections.


Subject(s)
Anti-Infective Agents , Plants, Medicinal , Urinary Tract Infections , Biofilms , Quorum Sensing , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Infective Agents/pharmacology , Urinary Tract Infections/drug therapy , Anti-Bacterial Agents/pharmacology
3.
J Biomol Struct Dyn ; 41(18): 8844-8855, 2023.
Article in English | MEDLINE | ID: mdl-36300533

ABSTRACT

Due to its negative effects on people, melamine contamination in food products are detected and filtered. Amongst several sensory schemes for the screening of melamine poisoning, one of the most promising techniques is the use of nanomaterial based sensing for real time applicability in industries. In the current work, we have looked into the way melamine binds to Ga12-N12/P12 nanocages. Surface-enhanced Raman scattering (SERS), a successful spectroscopic technique is used to monitor melamine. Density functional theoretical (DFT) computations were used to study the sensing properties of melamine (Me) with Ga12-N12/P12 nanocages. Reactivity and Mulliken charge analyses show charge transfer from melamine to nanocage. Me-Ga12-N12 and Me-Ga12P12 clusters have adsorption energies of -47.54 and -33.12 kcal/mol, respectively. All nanocage-Me systems have a significant increase in polarizability. The electron densities revealed non-covalent interactions in the adsorbed systems. All adsorption energies in aqueous media are negative, indicating an attractive and exothermic reaction, with maximum value in water for Me-Ga12N12 and in acetone for Me-Ga12P12. Evidence of SERS is observed due to the enhancement of different vibrational modes.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL