Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 62(6): e0048524, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38785449

ABSTRACT

A laboratory-developed test (LDT) using analyte-specific reagents has been optimized on a commercial platform to detect macrolide resistance-associated mutations (MRM) in 23S rRNA from Mycoplasmoides genitalium from primary clinical specimens. In this study, MRM-LDT was applied to a multi-specimen source study set. One thousand four hundred ninety-five primary specimens testing positive for M. genitalium by commercial transcription-mediated amplification (TMA) were initially titered by the TMA assay using serial 10-fold dilutions to semi-quantitate target nucleic acid burden. Primary specimens were then processed for MRM detection using the MRM-LDT. Findings were stratified by gender and specimen source. The mean log10 target nucleic acid titer of a TMA-positive specimen was 3.51 (median 3; range 0-10). Male specimens (n = 1145) demonstrated a mean log10 M. genitalium TMA titer of 3.67; that value observed in 350 female specimens was 2.98 (P < 0.0001). The MRM-LDT detection rate (88.7%) from specimens with log10 M. genitalium TMA titers ≥ 4 was increased over specimens with log10 titers ≤ 1 (4.5%; P < 0.0002). In females, MRM-LDT was positive from 51.3% of vaginal swab and 34.7% of urine specimens (P = 0.01). In males, MRM-LDT was positive from 65.0% of rectal swab and 55.7% of urine specimens (P = 0.002). Differences were also observed in log10 M. genitalium TMA titers as a function of specimen source. M. genitalium macrolide resistance rates among multiple specimen sources, as determined by MRM-LDT, are high in the United States and can be consistent with target nucleic acid burden within the primary specimen. Caveats experienced within subgroupings support MRM reflex testing on primary M. genitalium-positive specimens. IMPORTANCE: First-line macrolide treatment failure is of increasing concern with Mycoplasmoides genitalium in multiple settings. Recent sexually-transmitted infection treatment guidelines from the United States Centers for Disease Control and Prevention have predicated therapeutic approaches on the availability of a macrolide resistance/susceptibility result from a primary clinical specimen. In this report, we investigate potential correlation between macrolide resistance mutation detection rates (identified by a molecular amplified laboratory-developed test) and transcription-mediated amplification-based rRNA target semi-quantitation. Data reveal that rRNA semi-quantitation and laboratory-developed test detection rate differences exist as a function of gender and specimen source. These data can guide providers in proper specimen selection not only for the laboratory diagnosis of M. genitalium but also macrolide resistance mutation determination from primary clinical specimens.


Subject(s)
Drug Resistance, Bacterial , Macrolides , RNA, Ribosomal, 23S , Humans , Female , Male , Macrolides/pharmacology , RNA, Ribosomal, 23S/genetics , Drug Resistance, Bacterial/genetics , Sex Factors , Anti-Bacterial Agents/pharmacology , Mycoplasma genitalium/genetics , Mycoplasma genitalium/drug effects , Molecular Diagnostic Techniques/methods , Mutation
2.
Front Trop Dis ; 42024 Jan 31.
Article in English | MEDLINE | ID: mdl-38500783

ABSTRACT

The parasitic worm-derived immunomodulator, ES-62 rescues defective levels of IL-10-producing regulatory B cells (Bregs) and suppresses chronic Th1/Th17-driven inflammation to protect against joint destruction in the mouse collagen-induced arthritis (CIA) model of rheumatoid arthritis. Such autoimmune arthritis is also associated with dysbiosis of the gut microbiota and disruption of intestinal barrier integrity. We recently further exploited the CIA model to show that ES-62's prevention of joint destruction is associated with protection of intestinal barrier integrity and normalization of the gut microbiota, thereby suppressing the gut pathology that precedes the onset of autoimmunity and joint damage in CIA-mice. As the status of the gut microbiota impacts on immune responses by influencing haematopoiesis, we have therefore investigated whether ES-62 harnesses the homeostatic mechanisms regulating this gut-bone marrow (BM) axis to resolve the chronic inflammation promoting autoimmunity and joint destruction in CIA. Reflecting this, ES-62 was found to counteract the BM myeloid/lymphoid bias typically associated with chronic inflammation and infection. This was achieved primarily by ES-62 acting to maintain the levels of lymphoid lineages (B220+ and CD3+ cells) observed in naïve, healthy mice but lost from the BM of CIA-mice. Moreover, ES-62's ability to prevent bone-destroying osteoclastogenesis was found to be associated with its suppression of CIA-induced upregulation of osteoclast progenitors (OCPs) in the BM. Critically, and supporting ES-62's targeting of the gut-BM axis, this rewiring of inflammatory haematopoiesis was lost in mice with a depleted microbiome. Underlining the importance of ES-62's actions in restoring steady-state haematopoiesis, the BM levels of B and T lymphoid cells were shown to be inversely correlated, whilst the levels of OCPs positively correlated, with the severity of joint damage in CIA-mice.

3.
J Clin Microbiol ; 61(7): e0033523, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37341596

ABSTRACT

With improvement in laboratory diagnosis of Mycoplasmoides genitalium infection through molecular diagnostics, macrolide resistance determination within M. genitalium-positive patients is necessary. In this study, we report baseline parameters for an analyte-specific reagent (ASR) macrolide resistance real-time reverse transcriptase PCR on an open access analyzer and evaluated detection of macrolide resistance-mediated mutation (MRM) within 23S rRNA in a clinical specimen set. Initial use of 1.2 µM M. genitalium primer and 0.8 µM M. genitalium detection probe concentrations yielded an 80% false-positive detection rate when challenged with 10,000 copies of wild-type RNA. Optimization experiments showed that lowering primer/detection probe and MgCl2 concentrations minimized these false-detections of wild-type 23S rRNA, while higher levels of KCl increased rates of MRM detection with concomitant lower cycle threshold values and higher fluorescence emission. Lower limit of A2058G mutation detection was 5000 copies/mL (180 copies/reaction; 20/20 detections). Utilization of a baseline correction slope limit of 250 units further mitigated false-detection from wild-type 23S rRNA at challenges up to 3.3 billion copies/mL. MRM was detected in 583/866 (67.3%) clinical specimens initially positive for M. genitalium by commercial transcription-mediated amplification. These data included 392/564 detections (69.5%) from M. genitalium-positive swab specimens and 191/302 (63.2%) from M. genitalium-positive-positive first-void urine specimens (P = 0.06). Overall resistance detection rates did not vary by gender (P = 0.76). Specificity of the M. genitalium macrolide resistance ASR was 100% (141 urogenital determinations). MRM detection by the ASR was confirmed at a concordance rate of 90.9% by Sanger sequencing of a clinical specimen subset.


Subject(s)
Mycoplasma Infections , Mycoplasma genitalium , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Macrolides/pharmacology , Indicators and Reagents , RNA, Ribosomal, 23S/genetics , Drug Resistance, Bacterial/genetics , Mycoplasma genitalium/genetics , Mutation , Mycoplasma Infections/diagnosis
4.
Front Immunol ; 13: 953053, 2022.
Article in English | MEDLINE | ID: mdl-36105811

ABSTRACT

Despite significant increases in human lifespan over the last century, adoption of high calorie diets (HCD) has driven global increases in type-2 diabetes, obesity and cardiovascular disease, disorders precluding corresponding improvements in healthspan. Reflecting that such conditions are associated with chronic systemic inflammation, evidence is emerging that infection with parasitic helminths might protect against obesity-accelerated ageing, by virtue of their evolution of survival-promoting anti-inflammatory molecules. Indeed, ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, improves the healthspan of both male and female C57BL/6J mice undergoing obesity-accelerated ageing and also extends median lifespan in male animals, by positively impacting on inflammatory, adipose metabolic and gut microbiome parameters of ageing. We therefore explored whether ES-62 affects the osteoimmunology axis that integrates environmental signals, such as diet and the gut microbiome to homeostatically regulate haematopoiesis and training of immune responses, which become dysregulated during (obesity-accelerated) ageing. Of note, we find sexual dimorphisms in the decline in bone health, and associated dysregulation of haematopoiesis and consequent peripheral immune responses, during obesity-accelerated ageing, highlighting the importance of developing sex-specific anti-ageing strategies. Related to this, ES-62 protects trabecular bone structure, maintaining bone marrow (BM) niches that counter the ageing-associated decline in haematopoietic stem cell (HSC) functionality highlighted by a bias towards myeloid lineages, in male but not female, HCD-fed mice. This is evidenced by the ability of ES-62 to suppress the adipocyte and megakaryocyte bias and correspondingly promote increases in B lymphocytes in the BM. Furthermore, the consequent prevention of ageing-associated myeloid/lymphoid skewing is associated with reduced accumulation of inflammatory CD11c+ macrophages and IL-1ß in adipose tissue, disrupting the perpetuation of inflammation-driven dysregulation of haematopoiesis during obesity-accelerated ageing in male HCD-fed mice. Finally, we report the ability of small drug-like molecule analogues of ES-62 to mimic some of its key actions, particularly in strongly protecting trabecular bone structure, highlighting the translational potential of these studies.


Subject(s)
Helminth Proteins , Helminths , Aging , Animals , Anti-Inflammatory Agents , Disease Models, Animal , Female , Helminths/metabolism , Humans , Inflammation , Male , Mice , Mice, Inbred C57BL , Obesity
SELECTION OF CITATIONS
SEARCH DETAIL
...