Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Cell Rep Med ; 5(8): 101682, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39168095

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) affects 25% of the adult population with no effective drug treatments available. Previous animal studies reported that a polyphenol-rich extract from the Amazonian berry camu-camu (CC) prevented hepatic steatosis in a mouse model of diet-induced obesity. This study aims to determine the impact of CC on hepatic steatosis (primary outcome) and evaluate changes in metabolic and gut microbiota profiles (exploratory outcomes). A randomized, double-blind, placebo-controlled crossover trial is conducted on 30 adults with overweight and hypertriglyceridemia, who consume 1.5 g of CC capsules or placebo daily for 12 weeks. CC treatment decreases liver fat by 7.43%, while it increases by 8.42% during the placebo intervention, showing a significant difference of 15.85%. CC decreases plasma aspartate and alanine aminotransferases levels and promotes changes in gut microbiota composition. These findings support that polyphenol-rich prebiotic may reduce liver fat in adults with overweight, reducing the risk of developing NAFLD.


Subject(s)
Cross-Over Studies , Gastrointestinal Microbiome , Hypertriglyceridemia , Liver , Non-alcoholic Fatty Liver Disease , Overweight , Humans , Male , Female , Middle Aged , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Adult , Liver/metabolism , Liver/drug effects , Liver/pathology , Gastrointestinal Microbiome/drug effects , Biomarkers/blood , Plant Extracts/pharmacology , Double-Blind Method , Alanine Transaminase/blood
2.
J Nutr ; 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39163971

ABSTRACT

BACKGROUND: Maple syrup, a minimally transformed sweetener rich in polyphenols, can exert a action and improve metabolic parameters in animal models. However, no randomized clinical trial has investigated this. OBJECTIVES: This study aims to determine whether replacing refined sugars with an equivalent quantity of maple syrup could decrease key cardiometabolic risk factors in individuals with mild metabolic alterations. METHODS: In a randomized, double-blind, controlled crossover trial with 42 overweight adults with mild cardiometabolic alterations, participants were instructed to substitute 5% of their total caloric intake from added sugars with either maple syrup or an artificially flavored sucrose syrup for 8 wk. The primary outcome included changes in glucose homeostasis, whereas secondary outcomes were changes in other cardiometabolic risk factors such as blood pressure, anthropometric indices, and blood lipid profiles. Exploratory outcomes involved analyzing changes in gut microbiota composition. RESULTS: Replacing refined sugars with maple syrup over 8 wk decreased the glucose area under the curve when compared with substituting refined sugars with sucrose syrup, as determined during the oral glucose tolerance test, leading to a significant difference between the intervention arms (-50.59 ± 201.92 compared with 29.93 ± 154.90; P < 0.047). Substituting refined sugar with maple syrup also significantly decreased android fat mass (-7.83 ± 175.05 g compared with 67.61 ± 206.71 g; P = 0.02) and systolic blood pressure (-2.72 ± 8.73 mm Hg compared with 0.87 ± 8.99 mm Hg; P = 0.03). No changes in the blood lipid profile were observed. As an exploratory outcome, we further observed that substituting refined sugars with maple syrup promoted selective taxonomic changes in the gut microbiota such as a significant reduction in the abundance of Klebsiella species and decreased microbial functions associated with bacterial-induced cytokine response, when compared with substitution with sucrose syrup. CONCLUSIONS: Substituting refined sugars with maple syrup in individuals with mild metabolic alterations result in a significantly greater reduction of key cardiometabolic risk factors compared with substitution with sucrose syrup, in association with specific changes in gut microbiota. The role of the gut microbiota in these effects remains to be further explored. This trial was registered at clinicaltrials.gov as NCT04117802.

3.
Article in English | MEDLINE | ID: mdl-39127552

ABSTRACT

Individuals with excessive adipose tissue and type 2 diabetes mellitus (T2DM) face a heightened risk of cardiovascular morbidity and mortality. Metabolic surgery is an effective therapy for people with severe obesity to achieve significant weight loss. Additionally, metabolic surgery improves blood glucose levels and can lead to T2DM remission, reducing major adverse cardiovascular outcomes (MACE). Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are a class of medication that effectively reduce body weight and MACE in patients with T2DM. This review explores the potential mechanisms underlying the cardioprotective benefits of metabolic surgery and GLP-1RA-based therapies and discusses recent evidence and emerging therapies in this dynamic area of research.

4.
J Endocrinol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39145614

ABSTRACT

Cardiovascular outcome trials (CVOTs) in people living with T2DM and obesity have confirmed the cardiovascular benefits of glucagon-like peptide 1 receptor agonists (GLP-1RA), including reduced cardiovascular mortality, lower rates of myocardial infarction, and lower rates of stroke. The cardiovascular benefits observed following GLP-1RA treatment could be secondary to improvements in glycemia, blood pressure, postprandial lipidemia, and inflammation. Yet, the GLP-1R is also expressed in the heart and vasculature, suggesting that GLP-1R agonism may impact the cardiovascular system. The emergence of GLP-1RA combined with glucose-dependant insulinotropic polypeptide (GIP) and glucagon (GCG) receptor agonists has shown promising results as new weight loss medications. Dual-agonist and tri-agonist therapies have demonstrated superior outcomes in weight loss, lowered blood sugar and lipid levels, restoration of tissue function, and enhancement of overall substrate metabolism compared to using GLP-1R agonists alone. However, the precise mechanisms underlying their cardiovascular benefits remain to be fully elucidated. This review aims to summarize the findings from CVOTs of GLP-1RAs, explore the latest data on dual and triagonist therapies, and delve into potential mechanisms contributing to their cardioprotective effects. It also addresses current gaps in understanding and areas for further research.

5.
J Pharm Pharm Sci ; 27: 13065, 2024.
Article in English | MEDLINE | ID: mdl-38903652

ABSTRACT

Excess adiposity can contribute to metabolic complications, such as type 2 diabetes mellitus (T2DM), which poses a significant global health burden. Traditionally viewed as a chronic and irreversible condition, T2DM management has evolved and new approaches emphasizing reversal and remission are emerging. Bariatric surgery demonstrates significant improvements in body weight and glucose homeostasis. However, its complexity limits widespread implementation as a population-wide intervention. The identification of glucagon-like peptide 1 (GLP-1) and the development of GLP-1 receptor agonists (GLP-1RAs) have improved T2DM management and offer promising outcomes in terms of weight loss. Innovative treatment approaches combining GLP-1RA with other gut and pancreatic-derived hormone receptor agonists, such as glucose-dependant insulinotropic peptide (GIP) and glucagon (GCG) receptor agonists, or coadministered with amylin analogues, are demonstrating enhanced efficacy in both weight loss and glycemic control. This review aims to explore the benefits of bariatric surgery and emerging pharmacological therapies such as GLP-1RAs, and dual and triple agonists in managing obesity and T2DM while highlighting the caveats and evolving landscape of treatment options.


Subject(s)
Bariatric Surgery , Diabetes Mellitus, Type 2 , Obesity , Humans , Diabetes Mellitus, Type 2/drug therapy , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/therapeutic use , Weight Loss/drug effects , Obesity Management
6.
Am J Physiol Endocrinol Metab ; 326(5): E616-E625, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38477665

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) has been identified as risk factor of incident type 2 diabetes (T2D), but the underlying postprandial mechanisms remain unclear. We compared the glucose metabolism, insulin resistance, insulin secretion, and insulin clearance post-oral glucose tolerance test (OGTT) between individuals with and without MAFLD. We included 50 individuals with a body mass index (BMI) between 25 and 40 kg/m2 and ≥1 metabolic alteration: increased fasting triglycerides or insulin, plasma glucose 5.5-6.9 mmol/L, or glycated hemoglobin 5.7-5.9%. Participants were grouped according to MAFLD status, defined as hepatic fat fraction (HFF) ≥5% on MRI. We used oral minimal model on a frequently sampled 3 h 75 g-OGTT to estimate insulin sensitivity, insulin secretion, and pancreatic ß-cell function. Fifty percent of participants had MAFLD. Median age (IQR) [57 (45-65) vs. 57 (44-63) yr] and sex (60% vs. 56% female) were comparable between groups. Post-OGTT glucose concentrations did not differ between groups, whereas post-OGTT insulin concentrations were higher in the MAFLD group (P < 0.03). Individuals with MAFLD exhibited lower insulin clearance, insulin sensitivity, and first-phase pancreatic ß-cell function. In all individuals, increased insulin incremental area under the curve and decreased insulin clearance were associated with HFF after adjusting for age, sex, and BMI (P < 0.02). Among individuals with metabolic alterations, the presence of MAFLD was characterized mainly by post-OGTT hyperinsulinemia and reduced insulin clearance while exhibiting lower first phase ß-cell function and insulin sensitivity. This suggests that MAFLD is linked with impaired insulin metabolism that may precede T2D.NEW & NOTEWORTHY Using an oral glucose tolerance test, we found hyperinsulinemia, lower insulin sensitivity, lower insulin clearance, and lower first-phase pancreatic ß-cell function in individuals with MAFLD. This may explain part of the increased risk of incident type 2 diabetes in this population. These data also highlight implications of hyperinsulinemia and impaired insulin clearance in the progression of MAFLD to type 2 diabetes.


Subject(s)
Blood Glucose , Glucose Tolerance Test , Hyperinsulinism , Insulin Resistance , Insulin , Non-alcoholic Fatty Liver Disease , Humans , Female , Male , Middle Aged , Hyperinsulinism/metabolism , Hyperinsulinism/blood , Aged , Adult , Blood Glucose/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Insulin/blood , Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Postprandial Period , Insulin Secretion , Body Mass Index , Liver/metabolism , Insulin-Secreting Cells/metabolism
7.
Peptides ; 176: 171200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555054

ABSTRACT

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are peptide hormones produced by enteroendocrine cells in the small intestine. Despite being produced in the gut, the leveraging of their role in potentiating glucose-stimulated insulin secretion, also known as the incretin effect, has distracted from discernment of direct intestinal signaling circuits. Both preclinical and clinical evidence have highlighted a role for the incretins in inflammation. In this review, we highlight the discoveries of GLP-1 receptor (GLP-1R)+ natural (TCRαß and TCRγδ) and induced (TCRαß+CD4+ cells and TCRαß+CD8αß+) intraepithelial lymphocytes. Both endogenous signaling and pharmacological activation of GLP-1R impact local and systemic inflammation, the gut microbiota, whole-body metabolism, as well as the control of GLP-1 bioavailability. While GIPR signaling has been documented to impact hematopoiesis, the impact of these bone marrow-derived cells in gut immunology is not well understood. We uncover gaps in the literature of the evaluation of the impact of sex in these GLP-1R and GIP receptor (GIPR) signaling circuits and provide speculations of the maintenance roles these hormones play within the gut in the fasting-refeeding cycles. GLP-1R agonists and GLP-1R/GIPR agonists are widely used as treatments for diabetes and weight loss, respectively; however, their impact on gut homeostasis has not been fully explored. Advancing our understanding of the roles of GLP-1R and GIPR signaling within the gut at homeostasis as well as metabolic and inflammatory diseases may provide targets to improve disease management.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Inflammation , Receptors, Gastrointestinal Hormone , Humans , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Receptors, Gastrointestinal Hormone/metabolism , Inflammation/metabolism , Inflammation/immunology , Animals , Immunomodulation , Gastrointestinal Microbiome/immunology , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Signal Transduction
8.
Sci Rep ; 14(1): 3077, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321177

ABSTRACT

Overconsumption of added sugars has been pointed out as a major culprit in the increasing rates of obesity worldwide, contributing to the rising popularity of non-caloric sweeteners. In order to satisfy the growing demand, industrial efforts have been made to purify the sweet-tasting molecules found in the natural sweetener stevia, which are characterized by a sweet taste free of unpleasant aftertaste. Although the use of artificial sweeteners has raised many concerns regarding metabolic health, the impact of purified stevia components on the latter remains poorly studied. The objective of this project was to evaluate the impact of two purified sweet-tasting components of stevia, rebaudioside A and D (RebA and RebD), on the development of obesity, insulin resistance, hepatic health, bile acid profile, and gut microbiota in a mouse model of diet-induced obesity. Male C57BL/6 J mice were fed an obesogenic high-fat/high-sucrose (HFHS) diet and orally treated with 50 mg/kg of RebA, RebD or vehicle (water) for 12 weeks. An additional group of chow-fed mice treated with the vehicle was included as a healthy reference. At weeks 10 and 12, insulin and oral glucose tolerance tests were performed. Liver lipids content was analyzed. Whole-genome shotgun sequencing was performed to profile the gut microbiota. Bile acids were measured in the feces, plasma, and liver. Liver lipid content and gene expression were analyzed. As compared to the HFHS-vehicle treatment group, mice administered RebD showed a reduced weight gain, as evidenced by decreased visceral adipose tissue weight. Liver triglycerides and cholesterol from RebD-treated mice were lower and lipid peroxidation was decreased. Interestingly, administration of RebD was associated with a significant enrichment of Faecalibaculum rodentium in the gut microbiota and an increased secondary bile acid metabolism. Moreover, RebD decreased the level of lipopolysaccharide-binding protein (LBP). Neither RebA nor RebD treatments were found to impact glucose homeostasis. The daily consumption of two stevia components has no detrimental effects on metabolic health. In contrast, RebD treatment was found to reduce adiposity, alleviate hepatic steatosis and lipid peroxidation, and decrease LBP, a marker of metabolic endotoxemia in a mouse model of diet-induced obesity.


Subject(s)
Adiposity , Diterpenes, Kaurane , Glycosides , Insulin Resistance , Male , Mice , Animals , Mice, Inbred C57BL , Liver/metabolism , Obesity/metabolism , Triglycerides , Diet, High-Fat , Sucrose/metabolism , Bile Acids and Salts/metabolism , Lipid Metabolism
9.
Am J Physiol Endocrinol Metab ; 325(6): E661-E671, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37877794

ABSTRACT

Overconsumption of added sugars is now largely recognized as a major culprit in the global situation of obesity and metabolic disorders. Previous animal studies reported that maple syrup (MS) is less deleterious than refined sugars on glucose metabolism and hepatic health, but the mechanisms remain poorly studied. Beyond its content in sucrose, MS is a natural sweetener containing several bioactive compounds, such as polyphenols and inulin, which are potential gut microbiota modifiers. We aimed to investigate the impact of MS on metabolic health and gut microbiota in male C57Bl/6J mice fed a high-fat high-sucrose (HFHS + S) diet or an isocaloric HFHS diet in which a fraction (10% of the total caloric intake) of the sucrose was substituted by MS (HFHS + MS). Insulin and glucose tolerance tests were performed at 5 and 7 wk into the diet, respectively. The fecal microbiota was analyzed by whole-genome shotgun sequencing. Liver lipids and inflammation were determined, and hepatic gene expression was assessed by transcriptomic analysis. Maple syrup was less deleterious on insulin resistance and decreased liver steatosis compared with mice consuming sucrose. This could be explained by the decreased intestinal α-glucosidase activity, which is involved in carbohydrate digestion and absorption. Metagenomic shotgun sequencing analysis revealed that MS intake increased the abundance of Faecalibaculum rodentium, Romboutsia ilealis, and Lactobacillus johnsonii, which all possess gene clusters involved in carbohydrate metabolism, such as sucrose utilization and butyric acid production. Liver transcriptomic analyses revealed that the cytochrome P450 (Cyp450) epoxygenase pathway was differently modulated between HFHS + S- and HFHS + MS-fed mice. These results show that substituting sucrose for MS alleviated dysmetabolism in diet-induced obese mice, which were associated with decreased carbohydrate digestion and shifting gut microbiota.NEW & NOTEWORTHY The natural sweetener maple syrup has sparked much interest as an alternative to refined sugars. This study aimed to investigate whether the metabolic benefits of substituting sucrose with an equivalent dose of maple syrup could be linked to changes in gut microbiota composition and digestion of carbohydrates in obese mice. We demonstrated that maple syrup is less detrimental than sucrose on metabolic health and possesses a prebiotic-like activity through novel gut microbiota and liver mechanisms.


Subject(s)
Acer , Gastrointestinal Microbiome , Male , Animals , Mice , Sucrose , Mice, Obese , Liver/metabolism , Diet, High-Fat , Sweetening Agents , Digestion , Mice, Inbred C57BL
10.
Nutrients ; 12(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987923

ABSTRACT

Obesity and obesity-related disorders, such as type 2 diabetes have been progressively increasing worldwide and treatments have failed to counteract their progression. Growing evidence have demonstrated that gut microbiota is associated with the incidence of these pathologies. Hence, the identification of new nutritional compounds, able to improve health through a modulation of gut microbiota, is gaining interest. In this context, the aim of this study was to investigate the gut-driving effects of rhubarb extract in a context of diet-induced obesity and diabetes. Eight weeks old C57BL6/J male mice were fed a control diet (CTRL), a high fat and high sucrose diet (HFHS) or a HFHS diet supplemented with 0.3% (g/g) of rhubarb extract for eight weeks. Rhubarb supplementation fully prevented HFHS-induced obesity, diabetes, visceral adiposity, adipose tissue inflammation and liver triglyceride accumulation, without any modification in food intake. By combining sequencing and qPCR methods, we found that all these effects were associated with a blooming of Akkermansia muciniphila, which is strongly correlated with increased expression of Reg3γ in the colon. Our data showed that rhubarb supplementation is sufficient to protect against metabolic disorders induced by a diet rich in lipid and carbohydrates in association with a reciprocal interaction between Akkermansia muciniphila and Reg3γ.


Subject(s)
Akkermansia/metabolism , Diabetes Mellitus, Type 2/drug therapy , Dietary Supplements , Obesity/drug therapy , Rheum/chemistry , Adipose Tissue/metabolism , Akkermansia/isolation & purification , Animals , Biomarkers/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Diabetes Mellitus, Type 2/etiology , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Glucose Tolerance Test , Inflammation/drug therapy , Inflammation/etiology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/etiology , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Roots/chemistry , Sequence Analysis, DNA , Triglycerides/metabolism
11.
Am J Physiol Endocrinol Metab ; 318(6): E965-E980, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32228321

ABSTRACT

Blueberry consumption can prevent obesity-linked metabolic diseases, and it has been proposed that the polyphenol content of blueberries may contribute to these effects. Polyphenols have been shown to favorably impact metabolic health, but the role of specific polyphenol classes and whether the gut microbiota is linked to these effects remain unclear. We aimed to evaluate the impact of whole blueberry powder and blueberry polyphenols on the development of obesity and insulin resistance and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Sixty-eight C57BL/6 male mice were assigned to one of the following diets for 12 wk: balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract. After 8 wk, mice were housed in metabolic cages, and an oral glucose tolerance test (OGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups biweekly for 8 wk, followed by an OGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC- and ANT-treated mice showed improved insulin responses during OGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity and that at least part of these beneficial effects are explained by modulation of the gut microbiota.


Subject(s)
Anthocyanins/pharmacology , Blueberry Plants , Fruit , Gastrointestinal Microbiome/drug effects , Insulin Resistance , Obesity/metabolism , Plant Extracts/pharmacology , Proanthocyanidins/pharmacology , Animals , Body Weight/drug effects , Diet, High-Fat , Dietary Sucrose , Fecal Microbiota Transplantation , Glucose Tolerance Test , Male , Mice , Mice, Inbred C57BL , Obesity/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL