Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Oncoimmunology ; 13(1): 2349347, 2024.
Article En | MEDLINE | ID: mdl-38746870

The innate lymphoid cell (ILC) family is composed of heterogeneous innate effector and helper immune cells that preferentially reside in tissues where they promote tissue homeostasis. In cancer, they have been implicated in driving both pro- and anti-tumor responses. This apparent dichotomy highlights the need to better understand differences in the ILC composition and phenotype within different tumor types that could drive seemingly opposite anti-tumor responses. Here, we characterized the frequency and phenotype of various ILC subsets in melanoma metastases and primary epithelial ovarian tumors. We observed high PD-1 expression on ILC subsets isolated from epithelial ovarian tumor samples, while ILC populations in melanoma samples express higher levels of LAG-3. In addition, we found that the frequency of cytotoxic ILCs and NKp46+ILC3 in tumors positively correlates with monocytic cells and conventional type 2 dendritic cells, revealing potentially new interconnected immune cell subsets in the tumor microenvironment. Consequently, these observations may have direct relevance to tumor microenvironment composition and how ILC subset may influence anti-tumor immunity.


Carcinoma, Ovarian Epithelial , Immunity, Innate , Lymphocytes, Tumor-Infiltrating , Melanoma , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Melanoma/immunology , Melanoma/pathology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Programmed Cell Death 1 Receptor/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/metabolism , Lymphocyte Activation Gene 3 Protein , Antigens, CD/metabolism
2.
J Proteome Res ; 22(9): 3054-3067, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37595185

Multiple methods for quantitative proteomics are available for proteome profiling. It is unclear which methods are most useful in situations involving deep proteome profiling and the detection of subtle distortions in the proteome. Here, we compared the performance of seven different strategies in the analysis of a mouse model of Fragile X Syndrome, involving the knockout of the fmr1 gene that is the leading cause of autism spectrum disorder. Focusing on the cerebellum, we show that data-independent acquisition (DIA) and the tandem mass tag (TMT)-based real-time search method (RTS) generated the most informative profiles, generating 334 and 329 significantly altered proteins, respectively, although the latter still suffered from ratio compression. Label-free methods such as BoxCar and a conventional data-dependent acquisition were too noisy to generate a reliable profile, while TMT methods that do not invoke RTS showed a suppressed dynamic range. The TMT method using the TMTpro reagents together with complementary ion quantification (ProC) overcomes ratio compression, but current limitations in ion detection reduce sensitivity. Overall, both DIA and RTS uncovered known regulators of the syndrome and detected alterations in calcium signaling pathways that are consistent with calcium deregulation recently observed in imaging studies. Data are available via ProteomeXchange with the identifier PXD039885.

3.
Acta Neuropathol ; 144(6): 1127-1142, 2022 12.
Article En | MEDLINE | ID: mdl-36178522

Glioblastoma (GBM) is characterized by extensive cellular and genetic heterogeneity. Its initial presentation as primary disease (pGBM) has been subject to exhaustive molecular and cellular profiling. By contrast, our understanding of how GBM evolves to evade the selective pressure of therapy is starkly limited. The proteomic landscape of recurrent GBM (rGBM), which is refractory to most treatments used for pGBM, are poorly known. We, therefore, quantified the transcriptome and proteome of 134 patient-derived pGBM and rGBM samples, including 40 matched pGBM-rGBM pairs. GBM subtypes transition from pGBM to rGBM towards a preferentially mesenchymal state at recurrence, consistent with the increasingly invasive nature of rGBM. We identified immune regulatory/suppressive genes as important drivers of rGBM and in particular 2-5-oligoadenylate synthase 2 (OAS2) as an essential gene in recurrent disease. Our data identify a new class of therapeutic targets that emerge from the adaptive response of pGBM to therapy, emerging specifically in recurrent disease and may provide new therapeutic opportunities absent at pGBM diagnosis.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Brain Neoplasms/genetics , Proteomics , Neoplasm Recurrence, Local/genetics , Transcriptome
5.
Sci Adv ; 7(42): eabg6045, 2021 Oct 15.
Article En | MEDLINE | ID: mdl-34644115

Single-cell epigenomic assays have tremendous potential to illuminate mechanisms of transcriptional control in functionally diverse cancer cell populations. However, application of these techniques to clinical tumor specimens has been hampered by the current inability to distinguish malignant from nonmalignant cells, which potently confounds data analysis and interpretation. Here, we describe Copy-scAT, an R package that uses single-cell epigenomic data to infer copy number variants (CNVs) that define cancer cells. Copy-scAT enables studies of subclonal chromatin dynamics in complex tumors like glioblastoma. By deploying Copy-scAT, we uncovered potent influences of genetics on chromatin accessibility profiles in individual subclones. Consequently, some genetic subclones were predisposed to acquire stem-like or more differentiated molecular phenotypes, reminiscent of developmental paradigms. Copy-scAT is ideal for studies of the relationships between genetics and epigenetics in malignancies with high levels of intratumoral heterogeneity and to investigate how cancer cells interface with their microenvironment.

6.
Genes Chromosomes Cancer ; 60(8): 531-545, 2021 08.
Article En | MEDLINE | ID: mdl-33749950

Advanced cancers frequently show histologic and molecular intratumoral heterogeneity. Therefore, we comprehensively characterized advanced, metastatic, radioiodine-resistant (RAIR) thyroid carcinomas at the molecular level in the context of histologic heterogeneity with the aim to identify potentially actionable mutations that may guide the use of specific tyrosine kinase inhibitor (TKI) treatment. Whole exome sequencing (WES) was applied to 29 macrodissected tissue samples of histologically heterogeneous and homogeneous areas, lymph node and lung metastases from six clinically and histologically well-characterized metastatic RAIR thyroid cancer patients with structural incomplete response to treatment. WES data were analyzed to identify potential driver mutations in oncogenic pathways, copy number alterations, microsatellite instability, mutant-allele tumor heterogeneity, and the relevance of histologic heterogeneity to molecular profiling. In addition to known driver mutations in BRAF, NRAS, EIF1AX, NCOA4-RET, and TERT, further potentially actionable drivers were identified in AKT1, ATM, E2F1, HTR2A, and MLH3. The analysis of the evolutionary history of the mutations and the reconstruction of the molecular phylogeny of the cancers show a remarkable association between histologic and molecular heterogeneity. A comprehensive molecular analysis of the primary tumor guided by histologic analysis may help to better stratify patients for precision medicine approaches. Given the association between the molecular and the histologic heterogeneity, the selection of tumor samples for molecular analysis should be based on meticulous histologic evaluation of the entire tumor.


Mutation , Thyroid Neoplasms/genetics , Adult , Aged , Antineoplastic Agents/therapeutic use , Female , Genetic Heterogeneity , Genetic Testing/methods , Humans , Male , Middle Aged , Protein Kinase Inhibitors/therapeutic use , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Exome Sequencing/methods
7.
Genomics Proteomics Bioinformatics ; 19(2): 172-190, 2021 04.
Article En | MEDLINE | ID: mdl-33581341

How distinct transcriptional programs are enacted to generate cellular heterogeneity and plasticity, and enable complex fate decisions are important open questions. One key regulator is the cell's epigenome state that drives distinct transcriptional programs by regulating chromatin accessibility. Genome-wide chromatin accessibility measurements can impart insights into regulatory sequences (in)accessible to DNA-binding proteins at a single-cell resolution. This review outlines molecular methods and bioinformatic tools for capturing cell-to-cell chromatin variation using single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) in a scalable fashion. It also covers joint profiling of chromatin with transcriptome/proteome measurements, computational strategies to integrate multi-omic measurements, and predictive bioinformatic tools to infer chromatin accessibility from single-cell transcriptomic datasets. Methodological refinements that increase power for cell discovery through robust chromatin coverage and integrate measurements from multiple modalities will further expand our understanding of gene regulation during homeostasis and disease.


Chromatin , Transposases , Chromatin/genetics , Computational Biology , Genome , Single-Cell Analysis , Transcriptome , Transposases/chemistry , Transposases/genetics , Transposases/metabolism
8.
Nat Neurosci ; 23(7): 842-853, 2020 07.
Article En | MEDLINE | ID: mdl-32424282

Many immunotherapies act by enhancing the ability of cytotoxic T cells to kill tumor cells. Killing depends on T cell recognition of antigens presented by class I major histocompatibility complex (MHC-I) proteins on tumor cells. In this study, we showed that medulloblastomas lacking the p53 tumor suppressor do not express surface MHC-I and are therefore resistant to immune rejection. Mechanistically, this is because p53 regulates expression of the peptide transporter Tap1 and the aminopeptidase Erap1, which are required for MHC-I trafficking to the cell surface. In vitro, tumor necrosis factor (TNF) or lymphotoxin-ß receptor agonist can rescue expression of Erap1, Tap1 and MHC-I on p53-mutant tumor cells. In vivo, low doses of TNF prolong survival and synergize with immune checkpoint inhibitors to promote tumor rejection. These studies identified p53 as a key regulator of immune evasion and suggest that TNF could be used to enhance sensitivity of tumors to immunotherapy.


Cerebellar Neoplasms/immunology , Medulloblastoma/immunology , Tumor Escape/immunology , Tumor Necrosis Factor-alpha/immunology , Tumor Suppressor Protein p53/immunology , Animals , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Genome Res ; 29(8): 1211-1222, 2019 08.
Article En | MEDLINE | ID: mdl-31249064

We investigated the role of 3D genome architecture in instructing functional properties of glioblastoma stem cells (GSCs) by generating sub-5-kb resolution 3D genome maps by in situ Hi-C. Contact maps at sub-5-kb resolution allow identification of individual DNA loops, domain organization, and large-scale genome compartmentalization. We observed differences in looping architectures among GSCs from different patients, suggesting that 3D genome architecture is a further layer of inter-patient heterogeneity for glioblastoma. Integration of DNA contact maps with chromatin and transcriptional profiles identified specific mechanisms of gene regulation, including the convergence of multiple super enhancers to individual stemness genes within individual cells. We show that the number of loops contacting a gene correlates with elevated transcription. These results indicate that stemness genes are hubs of interaction between multiple regulatory regions, likely to ensure their sustained expression. Regions of open chromatin common among the GSCs tested were poised for expression of immune-related genes, including CD276 We demonstrate that this gene is co-expressed with stemness genes in GSCs and that CD276 can be targeted with an antibody-drug conjugate to eliminate self-renewing cells. Our results demonstrate that integrated structural genomics data sets can be employed to rationally identify therapeutic vulnerabilities in self-renewing cells.


Brain Neoplasms/genetics , Chromatin/ultrastructure , Chromosome Mapping/methods , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Neoplasm Proteins/genetics , B7 Antigens/antagonists & inhibitors , B7 Antigens/genetics , B7 Antigens/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation , Chromatin/chemistry , Enhancer Elements, Genetic , Gene Expression Profiling , Genetic Heterogeneity , Genome, Human , Genomics/methods , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Molecular Targeted Therapy , Neoplasm Proteins/classification , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription, Genetic
11.
Mol Cancer Res ; 17(1): 186-198, 2019 01.
Article En | MEDLINE | ID: mdl-30224541

Medulloblastomas, the most common malignant pediatric brain tumors, have been genetically defined into four subclasses, namely WNT-activated, Sonic Hedgehog (SHH)-activated, Group 3, and Group 4. Approximately 30% of medulloblastomas have aberrant SHH signaling and thus are referred to as SHH-activated medulloblastoma. The tumor suppressor gene TP53 has been recently recognized as a prognostic marker for patients with SHH-activated medulloblastoma; patients with mutant TP53 have a significantly worse outcome than those with wild-type TP53. It remains unknown whether p53 activity is impaired in SHH-activated, wild-type TP53 medulloblastoma, which is about 80% of the SHH-activated medulloblastomas. Utilizing the homozygous NeuroD2:SmoA1 mouse model with wild-type Trp53, which recapitulates human SHH-activated medulloblastoma, it was discovered that the endogenous Inhibitor 2 of Protein Phosphatase 2A (SET/I2PP2A) suppresses p53 function by promoting accumulation of phospho-MDM2 (S166), an active form of MDM2 that negatively regulates p53. Knockdown of I2PP2A in SmoA1 primary medulloblastoma cells reduced viability and proliferation in a p53-dependent manner, indicating the oncogenic role of I2PP2A. Importantly, this mechanism is conserved in the human medulloblastoma cell line ONS76 with wild-type TP53. Taken together, these findings indicate that p53 activity is inhibited by I2PP2A upstream of PP2A in SHH-activated and TP53-wildtype medulloblastomas. IMPLICATIONS: This study suggests that I2PP2A represents a novel therapeutic option and its targeting could improve the effectiveness of current therapeutic regimens for SHH-activated or other subclasses of medulloblastoma with wild-type TP53.


Cerebellar Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Hedgehog Proteins/metabolism , Histone Chaperones/metabolism , Medulloblastoma/metabolism , Tumor Suppressor Protein p53/metabolism , Adult , Animals , Cell Line, Tumor , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Gene Knockdown Techniques , Histone Chaperones/antagonists & inhibitors , Histone Chaperones/genetics , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Peptides/pharmacology , Tumor Suppressor Protein p53/genetics , Up-Regulation
12.
Oncogene ; 38(10): 1702-1716, 2019 03.
Article En | MEDLINE | ID: mdl-30348991

Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor, representing 20% of newly diagnosed childhood central nervous system malignancies. Although advances in multimodal therapy yielded a 5-year survivorship of 80%, MB still accounts for the leading cause of childhood cancer mortality. In this work, we describe the epigenetic regulator BMI1 as a novel therapeutic target for the treatment of recurrent human Group 3 MB, a childhood brain tumor for which there is virtually no treatment option beyond palliation. Current clinical trials for recurrent MB patients based on genomic profiles of primary, treatment-naive tumors will provide limited clinical benefit since recurrent metastatic MBs are highly genetically divergent from their primary tumor. Using a small molecule inhibitor against BMI1, PTC-028, we were able to demonstrate complete ablation of self-renewal of MB stem cells in vitro. When administered to mice xenografted with patient tumors, we observed significant reduction in tumor burden in both local and metastatic compartments and subsequent increased survival, without neurotoxicity. Strikingly, serial in vivo re-transplantation assays demonstrated a marked reduction in tumor initiation ability of recurrent MB cells upon re-transplantation of PTC-028-treated cells into secondary recipient mouse brains. As Group 3 MB is often metastatic and uniformly fatal at recurrence, with no current or planned trials of targeted therapy, an efficacious targeted agent would be rapidly transitioned to clinical trials.


Cerebellar Neoplasms/drug therapy , Medulloblastoma/drug therapy , Neoplastic Stem Cells/drug effects , Polycomb Repressive Complex 1/antagonists & inhibitors , Small Molecule Libraries/administration & dosage , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Child , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Humans , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/genetics , Small Molecule Libraries/pharmacology , Treatment Outcome , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
13.
Dev Cell ; 48(2): 167-183.e5, 2019 01 28.
Article En | MEDLINE | ID: mdl-30554998

SUFU alterations are common in human Sonic Hedgehog (SHH) subgroup medulloblastoma (MB). However, its tumorigenic mechanisms have remained elusive. Here, we report that loss of Sufu alone is unable to induce MB formation in mice, due to insufficient Gli2 activation. Simultaneous loss of Spop, an E3 ubiquitin ligase targeting Gli2, restores robust Gli2 activation and induces rapid MB formation in Sufu knockout background. We also demonstrated a tumor-promoting role of Sufu in Smo-activated MB (∼60% of human SHH MB) by maintaining robust Gli activity. Having established Gli2 activation as a key driver of SHH MB, we report a comprehensive analysis of its targetome. Furthermore, we identified Atoh1 as a target and molecular accomplice of Gli2 that activates core SHH MB signature genes in a synergistic manner. Overall, our work establishes the dual role of SUFU in SHH MB and provides mechanistic insights into transcriptional regulation underlying Gli2-mediated SHH MB tumorigenesis.


Cell Transformation, Neoplastic/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Zinc Finger Protein Gli2/genetics , Animals , Hedgehog Proteins/genetics , Humans , Medulloblastoma/genetics , Mice
14.
Dev Cell ; 44(6): 709-724.e6, 2018 03 26.
Article En | MEDLINE | ID: mdl-29551561

Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mutations of CREBBP. By contrast, loss of Crebbp in GNPs during postnatal development synergizes with oncogenic activation of SHH signaling to drive MB growth, thereby explaining the enrichment of somatic CREBBP mutations in SHH MB of adult patients. Together, our data provide insights into time-sensitive consequences of CREBBP mutations and corresponding associations with human diseases.


Acetyltransferases/metabolism , CREB-Binding Protein/metabolism , CREB-Binding Protein/physiology , Hedgehog Proteins/metabolism , Medulloblastoma/pathology , Mutation , Rubinstein-Taybi Syndrome/pathology , Adult , Animals , CREB-Binding Protein/genetics , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Female , Hedgehog Proteins/genetics , Humans , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Mice, Knockout , Neurons , Phenotype , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/metabolism , Signal Transduction
15.
Cancer Cell ; 32(3): 295-309.e12, 2017 09 11.
Article En | MEDLINE | ID: mdl-28898695

We developed an RNA-sequencing-based pipeline to discover differentially expressed cell-surface molecules in neuroblastoma that meet criteria for optimal immunotherapeutic target safety and efficacy. Here, we show that GPC2 is a strong candidate immunotherapeutic target in this childhood cancer. We demonstrate high GPC2 expression in neuroblastoma due to MYCN transcriptional activation and/or somatic gain of the GPC2 locus. We confirm GPC2 to be highly expressed on most neuroblastomas, but not detectable at appreciable levels in normal childhood tissues. In addition, we demonstrate that GPC2 is required for neuroblastoma proliferation. Finally, we develop a GPC2-directed antibody-drug conjugate that is potently cytotoxic to GPC2-expressing neuroblastoma cells. Collectively, these findings validate GPC2 as a non-mutated neuroblastoma oncoprotein and candidate immunotherapeutic target.


Glypicans/metabolism , Immunotherapy , Molecular Targeted Therapy , Neuroblastoma/immunology , Neuroblastoma/therapy , Oncogene Proteins/metabolism , Animals , Antibodies, Neoplasm/metabolism , Cell Death , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Child , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Mice, Inbred NOD , Mice, SCID , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Risk Factors
16.
Oncotarget ; 7(19): 28169-82, 2016 May 10.
Article En | MEDLINE | ID: mdl-27058758

DDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3's interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5'UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3's role in this process. Arsenite-induced stress shifts DDX3 binding from the 5'UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation.


Cerebellar Neoplasms/genetics , DEAD-box RNA Helicases/genetics , Medulloblastoma/genetics , Protein Biosynthesis/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Humans , Transcriptome
17.
Ecancermedicalscience ; 10: 630, 2016.
Article En | MEDLINE | ID: mdl-27110286

The first Workshop on Drug Delivery in Paediatric Brain Tumours was hosted in London by the charity Children with Cancer UK. The goals of the workshop were to break down the barriers to treating central nervous system (CNS) tumours in children, leading to new collaborations and further innovations in this under-represented and emotive field. These barriers include the physical delivery challenges presented by the blood-brain barrier, the underpinning reasons for the intractability of CNS cancers, and the practical difficulties of delivering cancer treatment to the brains of children. Novel techniques for overcoming these problems were discussed, new models brought forth, and experiences compared.

18.
Cancer Cell ; 29(3): 311-323, 2016 Mar 14.
Article En | MEDLINE | ID: mdl-26977882

Medulloblastoma (MB) is a highly malignant pediatric brain tumor. Despite aggressive therapy, many patients succumb to the disease, and survivors experience severe side effects from treatment. MYC-driven MB has a particularly poor prognosis and would greatly benefit from more effective therapies. We used an animal model of MYC-driven MB to screen for drugs that decrease viability of tumor cells. Among the most effective compounds were histone deacetylase inhibitors (HDACIs). HDACIs potently inhibit survival of MYC-driven MB cells in vitro, in part by inducing expression of the FOXO1 tumor suppressor gene. HDACIs also synergize with phosphatidylinositol 3-kinase inhibitors to inhibit tumor growth in vivo. These studies identify an effective combination therapy for the most aggressive form of MB.


Cell Proliferation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-myc/metabolism , Animals , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Genes, Tumor Suppressor/drug effects , Humans , Mice , Mice, Inbred C57BL
19.
Cancer Cell ; 26(1): 33-47, 2014 Jul 14.
Article En | MEDLINE | ID: mdl-24954133

Functional heterogeneity within tumors presents a significant therapeutic challenge. Here we show that quiescent, therapy-resistant Sox2(+) cells propagate sonic hedgehog subgroup medulloblastoma by a mechanism that mirrors a neurogenic program. Rare Sox2(+) cells produce rapidly cycling doublecortin(+) progenitors that, together with their postmitotic progeny expressing NeuN, comprise tumor bulk. Sox2(+) cells are enriched following anti-mitotic chemotherapy and Smoothened inhibition, creating a reservoir for tumor regrowth. Lineage traces from Sox2(+) cells increase following treatment, suggesting that this population is responsible for relapse. Targeting Sox2(+) cells with the antineoplastic mithramycin abrogated tumor growth. Addressing functional heterogeneity and eliminating Sox2(+) cells presents a promising therapeutic paradigm for treatment of sonic hedgehog subgroup medulloblastoma.


Biomarkers, Tumor/metabolism , Cell Proliferation , Cerebellar Neoplasms/metabolism , Hedgehog Proteins/metabolism , Medulloblastoma/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Antigens, Nuclear/metabolism , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Cell Lineage , Cell Proliferation/drug effects , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , DNA-Binding Proteins , Dose-Response Relationship, Drug , Doublecortin Domain Proteins , Drug Resistance, Neoplasm , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/genetics , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Mice , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Molecular Sequence Data , Neoplasm Recurrence, Local , Nerve Tissue Proteins/metabolism , Neurogenesis , Neuropeptides/metabolism , Nuclear Proteins/metabolism , Patched Receptors , Plicamycin/pharmacology , Prognosis , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , SOXB1 Transcription Factors/genetics , Smoothened Receptor , Time Factors , Tumor Cells, Cultured
20.
Curr Protoc Hum Genet ; Chapter 11: Unit 11.11.1-36, 2010 Apr.
Article En | MEDLINE | ID: mdl-20373513

This unit provides a protocol for performing digital gene expression profiling on the Illumina Genome Analyzer sequencing platform. Tag sequencing (Tag-seq) is an implementation of the LongSAGE protocol on the Illumina sequencing platform that increases utility while reducing both the cost and time required to generate gene expression profiles. The ultra-high-throughput sequencing capability of the Illumina platform allows the cost-effective generation of libraries containing an average of 20 million tags, a 200-fold improvement over classical LongSAGE. Tag-seq has less sequence composition bias, leading to a better representation of AT-rich tag sequences, and allows a more accurate profiling of a subset of the transcriptome characterized by AT-rich genes expressed at levels below the threshold of detection of LongSAGE (Morrissy et al., 2009).


Expressed Sequence Tags , Gene Expression Profiling/methods , Gene Library , Genomics/methods , RNA, Messenger/genetics , Sequence Analysis, DNA/methods , Polymerase Chain Reaction/methods
...