Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 628
Filter
1.
EFSA J ; 22(8): e8949, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114322

ABSTRACT

The food enzyme ß-galactosidase (ß-d-galactoside galactohydrolase; EC 3.2.1.23) is produced with the genetically modified Bacillus licheniformis strain DSM 34099 by Kerry Group Services International, Ltd. (KGSI). The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. The production strain met the requirements for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in two food manufacturing processes. Dietary exposure was estimated to be up to 7.263 mg total organic solids/kg body weight per day in European populations. Given the QPS status of the production strain and the absence of concerns resulting from the food enzyme manufacturing process, toxicity tests, other than an assessment of allergenicity, were considered unnecessary by the Panel. A search for the identity of the amino acid sequence of the food enzyme to known allergens was made and one match with a food allergen from kiwi fruit was found. The Panel considered that a risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to kiwi fruit, cannot be excluded. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

2.
EFSA J ; 22(8): e8935, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39104807

ABSTRACT

The food enzyme glucan 1,4-α-maltohydrolase (4-α-d-glucan α-maltohydrolase; EC 3.2.1.133) is produced with the genetically modified Saccharomyces cerevisiae strain LALL-MA+ by Danstar Ferment AG. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in the processing of cereals and other grains for production of baked products. Dietary exposure was estimated to be up to 0.014 mg TOS/kg body weight per day in European populations. Given the QPS status of the production strain and the absence of concerns resulting from the food enzyme manufacturing process, toxicity tests were considered unnecessary by the Panel. A search for the identity of the amino acid sequence of the food enzyme to known allergens was made and four matches were found, three with respiratory allergens and one with an allergen from mosquito (injected). The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

3.
EFSA J ; 22(8): e8897, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099614

ABSTRACT

The present opinion deals with the re-evaluation of shellac (E 904) when used as a food additive and with the new application on the extension of use of shellac (E 904) in dietary foods for special medical purposes. The Panel derived an acceptable daily intake (ADI) of 4 mg/kg body weight (bw) per day for wax-free shellac (E 904) produced by physical decolouring, based on a NOAEL of 400 mg/kg bw per day and applying an uncertainty factor of 100. The Panel concluded that the ADI of 4 mg/kg bw per day should be considered temporary for wax-free shellac (E 904) produced by chemical bleaching, while new data are generated on the identity and levels of the organochlorine impurities in E 904. This ADI is not applicable for wax-containing shellac as a food additive. For several age groups, the ADI was exceeded at the 95th percentile in the non-brand-loyal exposure assessment scenario and maximum level exposure assessment scenario. Considering the low exceedance and the fact that both the exposure estimation and the toxicological evaluation of shellac were conservative, the panel concluded that the calculated exceedance of the ADI does not indicate a safety concern. The Panel recommended to the European Commission separating specifications for E 904 depending on the manufacturing process, chemical bleaching and physical decolouring, because they result in different impurities; revising the definition of the food additive to include a description of each manufacturing process; deleting information on wax-containing shellac from the EU specifications; revising the acid value for wax-free shellac produced by chemical bleaching; lowering the maximum limit for lead; to consider introducing limits for other toxic elements potentially present in shellac; including a maximum limit for chloroform and total inorganic chloride in the EU specification for shellac produced by chemical bleaching.

4.
EFSA J ; 22(8): e8914, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099616

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Lietpak (EU register number RECYC327), which uses the EREMA MPR technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migration of 0.1 µg/kg food, derived from the exposure scenario for infants, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

5.
EFSA J ; 22(7): e8948, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39086456

ABSTRACT

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase i.e. EC 3.2.1.1) is produced with the non-genetically modified Cellulosimicrobium funkei strain AE-AMT by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that the food enzyme did not give rise to safety concerns when used in seven food manufacturing processes. Subsequently, the applicant has requested to extend its use to include three additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of ten food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in one food manufacturing process, the dietary exposure to the food enzyme-TOS was estimated only for the remaining nine processes. The dietary exposure was calculated to be up to 0.049 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level previously reported (230 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 4694. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

6.
EFSA J ; 22(7): e8947, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39086457

ABSTRACT

The food enzyme pullulanase (pullulan 6-α-glucanohydrolase; EC 3.2.1.41) is produced with the non-genetically modified Pullulanibacillus naganoensis strain AE-PL by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in one food manufacturing process. Subsequently, the applicant has requested to extend its use to include seven additional processes and to revise the previous use level. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of eight food manufacturing processes. As the food enzyme-total organic solids (TOS) are not carried into the final foods in two food manufacturing processes, the dietary exposure was estimated only for the remaining six processes. The dietary exposure was calculated to be up to 0.004 mg TOS/kg body weight (bw) per day in European populations. The Panel evaluated the repeated dose 90-day oral toxicity study in rats submitted in the previous application and identified a no observed adverse effect level of 643 mg TOS/kg bw per day, the highest dose tested. When compared with the calculated dietary exposure, this resulted in a margin of exposure of at least 160,750. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

7.
EFSA J ; 22(7): e8945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39086455

ABSTRACT

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is produced with the non-genetically modified Aspergillus luchuensis strain AE-L by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in one food manufacturing process. Subsequently, the applicant has requested to extend its use to include four additional processes and to revise the previous use level. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of five food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.458 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level previously reported (1726 mg TOS/kg bw per day, the highest dose tested), the Panel derived a revised margin of exposure of at least 3769. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

8.
EFSA J ; 22(7): e8869, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38993590

ABSTRACT

The food enzyme laccase (benzenediol:oxygen oxidoreductase, i.e. EC 1.10.3.2) is produced with the non-genetically modified Trametes hirsuta strain AE-OR by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in six food manufacturing processes. Subsequently, the applicant has requested to extend its use to include three additional processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of nine food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.030 mg TOS/kg body weight (bw) per day in European populations. Using the no observed adverse effect level previously reported (862 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 28,733. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

9.
EFSA J ; 22(7): e8868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966135

ABSTRACT

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-NP by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in thirteen food manufacturing processes. Subsequently, the applicant requested to extend its use to two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of fifteen food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining thirteen processes. Dietary exposure was calculated to be up to 35.251 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

10.
EFSA J ; 22(7): e8873, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966132

ABSTRACT

The food enzyme subtilisin (EC 3.4.21.62) is produced with the non-genetically modified Bacillus paralicheniformis strain AP-01 by Nagase (Europa) GmbH. It was considered free from viable cells of the production organism. The food enzyme is intended to be used in five food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in one process, dietary exposure was calculated only for the remaining four food manufacturing processes. It was estimated to be up to 0.875 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme has the capacity to produce bacitracin and thus failed to meet the requirements of the Qualified Presumption of Safety approach. Bacitracin was detected in the industrial fermentation medium but not in the food enzyme itself. However, the limit of detection of the analytical method used for bacitracin was not sufficient to exclude the possible presence of bacitracin at a level representing a risk for the development of antimicrobial resistant bacteria. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and twenty-eight matches with respiratory allergens, one match with a contact allergen and two matches with food allergens (melon and pomegranate) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to melon or pomegranate, cannot be excluded, but would not exceed the risk of consuming melon or pomegranate. Based on the data provided, the Panel could not exclude the presence of bacitracin, a medically important antimicrobial, and consequently the safety of this food enzyme could not be established.

11.
EFSA J ; 22(7): e8878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966136

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Fucine Film (EU register number RECYC322), which uses the Reifenhäuser technology. The input material consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are extruded under vacuum into sheets. The recycled sheets are intended to be used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, excluded drinking water and beverages, for long-term storage at room temperature, with or without hotfill. Based on the limited data available, the Panel concluded that the information submitted to EFSA was inadequate to demonstrate that the recycling process Fucine Film is able to reduce potential unknown contamination of the input PET flakes to a concentration that does not pose a risk to human health.

12.
EFSA J ; 22(7): e8872, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966133

ABSTRACT

The food enzyme ß-glucosidase (ß-D-glucoside glucohydrolase; EC 3.2.1.21) is produced with the non-genetically modified Penicillium guanacastense strain AE-GLY by Amano Enzyme Inc. The food enzyme is intended to be used in four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 4.054 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 943 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 233. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

13.
EFSA J ; 22(7): e8915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39050022

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process KGL (EU register number RECYC326), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 µg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

14.
EFSA J ; 22(7): e8939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39050025

ABSTRACT

The food enzyme thermolysin (EC. 3.4.24.27) is produced with the non-genetically modified Anoxybacillus caldiproteolyticus strain AE-TP by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in eight food manufacturing processes. Subsequently, the applicant has requested to extend its use to one additional process, to withdraw two processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme for use in a total of seven food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.989 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level reported in the previous opinion (700 mg TOS/kg bw per day, the mid-dose tested), the Panel derived a revised margin of exposure of at least 708. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

15.
EFSA J ; 22(7): e8940, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39050021

ABSTRACT

The food enzyme oryzin (EC 3.4.21.63) is produced with the non-genetically modified Aspergillus ochraceus strain AE-P by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in nine food manufacturing processes. Subsequently, the applicant has requested to extend its use to one additional process, to withdraw two food processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of eight food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.354 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level reported in the previous opinion (1862 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 5260. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

16.
EFSA J ; 22(7): e8916, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39050028

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Palamidis (EU register number RECYC325), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 µg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

17.
EFSA J ; 22(7): e8944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39050023

ABSTRACT

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is produced with the non-genetically modified Rhizopus arrhizus strain AE-TL(B) by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in two food manufacturing processes. Subsequently, the applicant requested to extend its use to include four additional processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of six food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from one food manufacturing process, the dietary exposure to the food enzyme-TOS was estimated only for the remaining five processes. Dietary exposure was calculated to be up to 0.086 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level reported in the previous opinion (1960 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 22,791. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

18.
EFSA J ; 22(7): e8917, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39050026

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Ecopacking (EU register number RECYC324), which uses the EREMA Basic technology. The input material is ■■■■■ washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor ■■■■■ before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 µg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

19.
EFSA J ; 22(7): e8874, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010862

ABSTRACT

The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain ASP by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme was considered free from viable cells of the production organism and its DNA. The food enzyme is intended to be used in the prevention of acrylamide formation in foods and in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.792 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level at the highest dose tested of 1038 mg TOS/kg bw per day, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 1311. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

20.
EFSA J ; 22(7): e8879, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39081816

ABSTRACT

In the context of entry into force of Regulation (EU) 2022/1616, EFSA updated the scientific guidance to assist applicants in the preparation of applications for the authorisation or for the modification of an existing authorisation of a 'post-consumer mechanical PET' recycling process (as defined in Annex I of Regulation (EU) 2022/1616) intended to be used for manufacturing materials and articles intended to come into contact with food. This Guidance describes the evaluation criteria and the scientific evaluation approach that EFSA will apply to assess the decontamination capability of recycling processes, as well as the information required to be included in an application dossier. The principle of the scientific evaluation approach is to apply the decontamination efficiency of a recycling process, obtained from a challenge test with surrogate contaminants, to a reference contamination level for post-consumer PET, set at 3 mg/kg PET for a contaminant resulting from possible misuse. The resulting residual concentration of each surrogate in recycled PET is then compared to a modelled concentration in PET that is calculated using generally recognised conservative migration models, such that the related migration does not give rise to a dietary exposure exceeding 0.0025 µg/kg body weight (bw) per day. This is the lowest threshold for toxicological concern (TTC) value, i.e. for potential genotoxicity, below which the risk to human health would be negligible. The information to be provided in the applications relates to: the recycling process (i.e. collection and pre-processing of the input, decontamination process, post-processing and intended use); the determination of the decontamination efficiency by the challenge test; the self-evaluation of the recycling process. On the basis of the submitted data, EFSA will assess the safety of the mechanical PET recycling process.

SELECTION OF CITATIONS
SEARCH DETAIL