Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 249: 126065, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37524273

ABSTRACT

Herein, we designed an on-site and portable colorimetric assay using cellulose acetate polymeric films incorporated with HKUST-1 metal-organic framework while immersed in a solution of methyl red and brilliant cresyl blue organic dyes as an indicator for monitoring ammonia levels. Ammonia serves as a significant biomarker of food spoilage which falls under the category of volatile organic compounds (VOCs). The designed colorimetric solid-state sensor was comprehensively characterized using FE-SEM, EDS-mapping, XRD, FTIR, and contact angle analyses. The results confirmed the superior stability, water permeability, good crystallinity and desirable morphology of the prepared sensor platform. Additionally, customized smartphone was developed and applied for online signaling and colorimetric analysis. The findings demonstrated two linear ranges: 1-100 ppb and 0.1-1340 ppm with a detection limit of 0.02 ppm. The solid-state sensor exhibited high selectivity in the presence of other VOCs such as methanol, ethanol, acetone, 2-propanol, toluene, humidity, and hexane. It displayed acceptable repeatability in both inter-day (RSD = 3.38 %) and intraday (RSD = 3.86 %), long-term stability over 4 days as well as reusability over 3 cycles. We successfully applied this sensing platform for ammonia monitoring in spoiled meat foods including veal, fish and chicken. The results indicated favorable percentage recovery and repeatability, confirming the feasibility and potential applicability of this intelligent packaging system for monitoring freshness. The platform allows for real-time monitoring and data analysis via smartphone-based online signaling, providing a convenient and effective method for ensuring food quality.


Subject(s)
Colorimetry , Meat Products , Animals , Cattle , Ammonia , Meat Products/analysis , Meat/analysis , Food Packaging , Hydrogen-Ion Concentration
2.
RSC Adv ; 12(45): 29503-29515, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36320776

ABSTRACT

Zr(CUR)/NiCo2S4/CuCo2S4 and Zr(CUR)/CuCo2S4/Ag2S ternary composites were synthesized as efficient photocatalysts, and well characterized through XRD, FTIR, DRS, FE-SEM, EDS, and EDS mapping techniques. The potential of a spiral-shaped photocatalytic reactor was evaluated for degradation of the methyl parathion (MP) pesticide using synthesized photocatalysts under visible light irradiation. Computational fluid dynamics (CFD) was applied for analysis of the hydrodynamics behaviour and mass transport occurring inside the reactor. The experiments were performed based on a developed CCD-RSM model, while the desirability function (DF) was used for optimization of the process. Findings showed that the highest MP degradation percentage was 98.70% at optimal operating values including 20 mg L-1, 0.60 g L-1, 8 and 40 min for MP concentration, catalyst dosage, pH, and reaction time, respectively. This study clearly demonstrated that high degradation efficiency can be achieved using a spiral-shaped photocatalytic reactor rather than a traditional annular reactor at same conditions. The increase in reaction rate is related to the higher average turbulence kinetic energy in the spiral-shaped reactor over the traditional reactor, which results in the increased diffusivity and improves the mass and momentum transfer.

3.
Environ Sci Pollut Res Int ; 29(37): 56055-56067, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35325383

ABSTRACT

Nowadays, textile industries have severely polluted the ecosystem and water sources via disposal of highly thermo- and photo-stable dyes within the ecology that require practical strategies to remove them from nature. In studies, the photocatalytic disinfection technique has been shown to have widespread applications in indoor air, environmental health, detection, biological, biomedical, laboratory hospital, pharmaceutical food industry, plant safety, waste water, effluents disposal, and drinking water disinfection. Herein, the sodium polytungstate (SPT) polyoxometalate (POM) was synthesized through a multi-step production procedure and hence modified via employing a green protocol by using tartaric acid, glutamic acid, and kombucha solvent toward efficient and total complete removal of the highly toxic, stable, and carcinogenic auramine-O (AO) dye from aqueous media. In this regard, developed materials were well-characterized, and their photocatalysis performance for photodegradation of AO dye was examined. Achieved results showed that the optimum absorption conditions were achieved at pH of 5.0, 15 mg/L of AO concentration, 0.04 g of photocatalyst dosage, and 110 min irradiation time, where SPT and modified SPT via green protocol showed full desirability (desirability function (DF) index of 1) along with 71.75 and 100% removal percentage, respectively. Obtained results justified the superior photocatalytic role of the SPT POM and its derived nanocluster that can be used for the complete removal of highly stable dyes from aqueous media till reaching the drinking water standard.


Subject(s)
Coloring Agents , Drinking Water , Anions , Azo Compounds/chemistry , Benzophenoneidum , Catalysis , Coloring Agents/chemistry , Ecosystem , Ions , Pharmaceutical Preparations , Polyelectrolytes , Sodium
4.
J Hazard Mater ; 409: 124478, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33239207

ABSTRACT

The Ce/Eu redox pair-functionalized HKUST-1 MOF, as an innovative environmentally friendly and recyclable sono-photocatalyst, was hydrothermally mixed and fully characterized by XRD, PL, EIS, FE-SEM, EDS, Mott-Schottky, chronoamperometry, and DRS techniques. The obtained chemical and optical characteristics of the n-type Ce/Eu-HKUST-1 MOF showed that the transfer of additional 4f orbital electrons in the Ce/Eu redox pair improves the sono-photocatalytic activity. The performance of Ce/Eu-HKUST-1 MOF for the sono-photodegradation of Malathion (MA) was evaluated in the aqueous media in the simultaneous presence of blue light and ultrasonic irradiation. The optimization of the process was cross-examined using the response surface methodology as a function of the MA concentration (15-35 mg·L-1), Ce/Eu-HKUST-1 mass (10-30 mg), pH (4-12), and ultrasonic wave irradiation duration (10-30 min). The maximum sono-photocatalytic degradation capacity was found to be 99.99% under the optimum conditions set as 25 mg·L-1, 20 mg, 8, and 25 min for the concentration of Malathion, photocatalyst mass, pH, and irradiation duration, respectively. These findings were attributed to the suppression of electron-hole pair recombination, increased life-time of charge carriers, enhanced visible light absorption, and prominent proportion of hydroxyl and peroxide radicals formed.

5.
Photochem Photobiol Sci ; 19(7): 943-955, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33830488

ABSTRACT

In this work, a high-surface-area dual inorganic molecularly imprinted (DIMI) Bi2WO6/CuO/Ag2O photo-catalyst was developed for the selective photocatalytic degradation of methyl green (MG) and auramine O (AO) dyes as target pollutants. The DIMI-Bi2WO6/CuO/Ag2O heterojunction was synthesized by a sono-chemically assisted sol-gel method by coating a layer of molecularly imprinted Ag2O/CuO on the surface of Bi2WO6 nanocubes with MG and AO as the templates. This was followed by calcination for the removal of target molecules and annealing for Ag/Cu oxide preparation. This novel photocatalyst was prepared to overcome the challenge of the co-existing non-target molecules, which has limited the photocatalytic degradation performance. The surface DIMI sites could act as surface defects for accelerating the separation of photogenerated holes and electrons, which led to the increased generation of OH radicals. Moreover, the DIMI sites had increased binding affinity toward MG and AO via the formation of multiple H bonds and electrostatic bonds, which were confirmed by FTIR spectroscopy, PL and EIS studies. The surface DIMI sites led to the increased adsorption and improved local concentration of MG and AO on Bi2WO6/CuO/Ag2O. Consequently, the heterojunction properties of the final DIMI product accelerated the transfer and separation of photogenerated carriers. The high binding affinity of the DIMI sites to MG and AO confirmed the selective recognition, which was tested in the presence of coexisting pollutant dyes. The other characterizations confirmed the successful fabrication and high photocatalytic activity of the high-surface-area DIMI-Bi2WO6/CuO/Ag2O heterostructured composite. In general, the superior interfacial electronic interactions, high migration efficiency of photoinduced charge carriers, and strong visible light absorption of the prepared photocatalyst resulted in good photocatalytic performance.


Subject(s)
Bismuth/chemistry , Light , Molecular Imprinting , Nanotubes/chemistry , Tungsten Compounds/chemistry , Water Pollutants, Chemical/chemistry , Benzophenoneidum/chemistry , Catalysis , Coloring Agents/chemistry , Copper/chemistry , Hydrogen Bonding , Methyl Green/chemistry , Oxides/chemistry , Photolysis/radiation effects , Silver Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , Static Electricity , Surface Properties
6.
RSC Adv ; 9(52): 30100-30111, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-35530235

ABSTRACT

A novel visible-light-driven Z-scheme heterojunction, Bi2WO6/Ag2S/ZnS, was synthesized and its photocatalytic activity was evaluated for the treatment of a binary mixture of dyes, and its physicochemical properties were characterized using FT-IR, XRD, DRS and FE-SEM techniques. The Bi2WO6/Ag2S/ZnS Z-scheme heterojunctions not only facilitate the charge separation and transfer, but also maintain the redox ability of their components. The superior photocatalytic activity demonstrated by the Z-scheme Bi2WO6/Ag2S/ZnS attributes its unique properties such as the rapid generation of electron-hole pairs, slow recombination rate, and narrow bandgap. The performance of the Bi2WO6/Ag2S/ZnS was evaluated for the simultaneous degradation of methyl green (MG) and auramine-O (AO) dyes, while the influences of the initial MG concentration (4-12 mg L-1), initial AO concentration (2-6 mg L-1), pH (3-9), irradiation time (60-120 min) and photocatalyst dosage (0.008-0.016 g L-1) were investigated through the response surface methodology. The desirability function approach was applied to optimize the process and results revealed that maximum photocatalytic degradation efficiency was obtained at optimum conditions including 6.08 mg L-1 of initial MG concentration, 4.04 mg L-1 of initial AO concentration, 7.25 of pH, 90.58 min of irradiation time and 0.013 g L-1 of photocatalyst dosage. In addition, a possible photocatalytic mechanism of the Bi2WO6/Ag2S/ZnS heterojunction was proposed based on the photoinduced charge carriers.

7.
Ultrason Sonochem ; 40(Pt A): 601-610, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28946465

ABSTRACT

CuO/CuO2/Cu nanoparticles were prepared by sonochemical combined thermal synthesis method and used as new photocatalyst for simultaneous photocatalytic degradation of safranin O (SO) and methylene blue (MB) dyes in rotating packed bed reactor equipped to blue light emitting diode (LED). The physicochemical properties of the synthesized CuO/Cu2O/Cu nanoparticles were investigated by XRD, SEM and DRS analysis. The band-gap of the prepared CuO/Cu2O/Cu-NPs was estimated to be about 1.42eV which is appropriate for photodegradation process under blue light irradiation. In rotating packed bed reactors, two key parameters are very important, one high centrifugal field and other porous media, which intensify mass transfer operation leads to photodegradation improvement. The maximum photodegradation efficiency was obtained at pH of 6 and subsequently the effects of CuO/Cu2O/Cu-NPs dosage, rotational speed, initial dyes concentration, flow rate and reaction time were studied by central composite design (CCD) and optimized values were found to be 0.3g/L, 900rpm, 10mg/L of both dyes, 0.3L/min and 90min, respectively. Finally, results showed that synergistic effects induced by forming Cu2O/CuO heterojunction containing Cu-NPs co-cocatalyst greatly accelerate electron transfer and effectively retard the reduction of CuO by photo-generated electrons.

8.
Ultrason Sonochem ; 35(Pt A): 449-457, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27810164

ABSTRACT

Degradation of abamectin pesticide was carried out using visible light driven Cu2(OH)PO4-HKUST-1 MOF photocatalyst through the sonophotocatalytic technique. Cu2(OH)PO4-HKUST-1 MOF as a visible-light driven photocatalyst, was synthesized and characterized by XRD, SEM, EDS and DRS. The direct bang gaps of HKUST-1 MOF and Cu2(OH)PO4-HKUST-1 MOF were estimated about 2.63 and 2.59eV, respectively, which reveals that these photocatalysts can be activated under blue light illumination. All sonophotodegradation experiments were performed using a continuous flow-loop reactor. The central composite design (CCD) methodology was applied for modeling, optimization and investigation of influence of operational parameters, i.e. irradiation time, pH, solution flow rate, oxygen flow rate, initial concentration and photocatalyst dosage on the sonophotocatalytic degradation of abamectin. The maximum degradation efficiency of 99.93% was found at optimal values as 20min, 4, 90mL/min, 0.2mL/min, 30mg/L and 0.4g/L, for irradiation time, pH, solution flow rate, oxygen flow rate, initial concentration and photocatalyst dosage, respectively. Evaluation of the synergism in the combination of ultrasonic and photocatalysis lead to a synergistic index of 2.19, which reveals that coupling of ultrasonic and photocatalysis has a greater efficiency than the sum of individual procedures for degradation of abamectin.

SELECTION OF CITATIONS
SEARCH DETAIL