Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters











Publication year range
1.
Alzheimers Dement ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39345217

ABSTRACT

INTRODUCTION: Rare variants in ABCA1 increase the risk of developing Alzheimer's disease (AD). ABCA1 facilitates the lipidation of apolipoprotein E (apoE). This study investigated whether microRNA-33 (miR-33)-mediated regulation of this ABCA1-APOE pathway affects phenotypes of an amyloid mouse model. METHODS: We generated mir-33+/+;APP/PS1 and mir-33-/-;APP/PS1 mice to determine changes in amyloid pathology using biochemical and histological analyses. We used RNA sequencing and mass spectrometry to identify the transcriptomic and proteomic changes between our genotypes. We also performed mechanistic experiments by determining the role of miR-33 in microglial migration and amyloid beta (Aß) phagocytosis. RESULTS: Mir-33 deletion increases ABCA1 levels and reduces Aß accumulation and glial activation. Multi-omics studies suggested miR-33 regulates the activation and migration of microglia. We confirm that the inhibition of miR-33 significantly increases microglial migration and Aß phagocytosis. DISCUSSION: These results suggest that miR-33 might be a potential drug target by modulating ABCA1 level, apoE lipidation, Aß level, and microglial function. HIGHLIGHTS: Loss of microRNA-33 (miR-33) increased ABCA1 protein levels and the lipidation of apolipoprotein E. Loss of miR-33 reduced amyloid beta (Aß) levels, plaque deposition, and gliosis. mRNAs and proteins dysregulated by miR-33 loss relate to microglia and Alzheimer's disease. Inhibition of miR-33 increased microglial migration and Aß phagocytosis in vitro.

2.
G3 (Bethesda) ; 2024 09 13.
Article in English | MEDLINE | ID: mdl-39271111

ABSTRACT

The modified E. coli biotin ligase BirA* was the first developed for proximity labeling of proteins (BioID). However, it has low activity at temperatures below 37˚C, which reduces its effectiveness in organisms growing at lower temperatures, such as budding yeast. Multiple derivatives of the enzymes have been engineered, but a thorough comparison of these variations of biotin ligases and the development of versatile tools for conducting these experiments in Saccharomyces cerevisiae would benefit the community. Here, we designed a suite of vectors to compare the activities of biotin ligase enzymes in yeast. We found that the newer TurboID versions were the most effective at labeling proteins, but they displayed low constitutive labeling of proteins even in the absence of exogenous biotin, due to biotin contained in the culture medium. We describe a simple strategy to express free BioID enzymes in cells that can be used as an appropriate control in BioID studies to account for the promiscuous labeling of proteins caused by random interactions between bait-BioID enzymes in cells. We also describe chemically-induced BioID systems exploiting the rapamycin-stabilized FRB-FKBP interaction. Finally, we used the TurboID version of the enzyme to explore the interactome of different subunits of the Ccr4-Not gene regulatory complex. We find that Ccr4-Not predominantly labeled cytoplasmic mRNA regulators, consistent with its function in mRNA decay and translation quality control in this cell compartment.

3.
bioRxiv ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39345446

ABSTRACT

Growing evidence shows that lysine methylation is a widespread protein post-translational modification that regulates protein function on histone and non-histone proteins. Numerous studies have demonstrated that dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and non-histone lysine methylation (Kme) simultaneously across multiple samples. Recent studies by our group and others have demonstrated that antibody enrichment is not required to detect lysine methylation, prompting us to investigate the use of Tandem Mass Tag (TMT) labeling for global Kme quantification sans antibody enrichment in four different breast cancer cell lines (MCF-7, MDA-MB-231, HCC1806, and MCF10A). To improve the quantification of KDMs, we incorporated a lysine demethylase (KDM) isobaric trigger channel, which enabled 96% of all KDMs to be quantified while simultaneously quantifying 326 Kme sites. Overall, 142 differentially abundant Kme sites and eight differentially abundant KDMs were identified between the four cell lines, revealing cell line-specific patterning.

4.
Mol Cancer Ther ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39210605

ABSTRACT

Proteasomes generate antigenic peptides that are presented on the tumor surface to cytotoxic T-lymphocytes (CTLs). Immunoproteasomes are highly-specialized proteasome variants that are expressed at higher levels in antigen-presenting cells and contain replacements of the three constitutive proteasome catalytic subunits to generate peptides with a hydrophobic C-terminus that fit within the groove of MHC class I (MHC-I) molecules. A hallmark of cancer is the ability to evade immunosurveillance by disrupting the antigen presentation machinery and downregulating MHC-I antigen presentation. High-throughput screening was performed to identify Compound A, a novel molecule that selectively increased immunoproteasome activity and expanded the number and diversity of MHC-I-bound peptides presented on multiple myeloma (MM) cells. Compound A increased the presentation of individual MHC-I-bound peptides >100-fold and unmasked tumor-specific neoantigens on myeloma cells. Global proteomic integral stability assays determined that Compound A binds the proteasome structural subunit PSMA1 and promotes association of the proteasome activator PA28α/ß (PSME1/PSME2) with immunoproteasomes. CRISPR/Cas9 silencing of PSMA1, PSME1, or PSME2 as well as treatment with immunoproteasome-specific suicide inhibitors abolished the effects of Compound A on antigen presentation. Treatment of MM cell lines and patient bone marrow-derived CD138+ cells with Compound A increased the antimyeloma activity of allogenic and autologous T-cells. Compound A was well-tolerated in vivo and co-treatment with allogeneic T-cells reduced the growth of myeloma xenotransplants in NSG mice. Taken together, our results demonstrate the paradigm-shifting impact of immunoproteasome activators to diversify the antigenic landscape, expand the immunopeptidome, potentiate T-cell-directed therapy, and reveal actionable neoantigens for personalized T-cell immunotherapy.

5.
STAR Protoc ; 5(3): 103185, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39078738

ABSTRACT

The aggregation and spreading of "tau-seeds" are key for the development and progression of tauopathies, including Alzheimer's disease. Here we describe the steps to isolate and analyze biochemically active tau-seeds from human, mouse, and cell origin. We detail the procedure to isolate soluble tau-seeds by size exclusion chromatography and seeding assay. The isolated tau-seed can be further analyzed to determine the interactome by mass spectrometry. This workflow identifies protein-protein interactors of tau-seeds, providing a useful tool for finding new therapeutic targets. For complete details on the use and execution of this protocol, please refer to Martinez et al.1.


Subject(s)
Proteomics , tau Proteins , tau Proteins/metabolism , tau Proteins/isolation & purification , tau Proteins/analysis , Proteomics/methods , Humans , Animals , Mice , Chromatography, Gel/methods , Tauopathies/metabolism , Alzheimer Disease/metabolism , Mass Spectrometry/methods
6.
Biomolecules ; 14(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062531

ABSTRACT

DZNep (3-deazaneplanocin A) is commonly used to reduce lysine methylation. DZNep inhibits S-adenosyl-l-homocysteine hydrolase (AHCY), preventing the conversion of S-adenosyl-l-homocysteine (SAH) into L-homocysteine. As a result, the SAM-to-SAH ratio decreases, an indicator of the methylation potential within a cell. Many studies have characterized the impact of DZNep on histone lysine methylation or in specific cell or disease contexts, but there has yet to be a study looking at the potential downstream impact of DZNep treatment on proteins other than histones. Recently, protein thermal stability has provided a new dimension for studying the mechanism of action of small-molecule inhibitors. In addition to ligand binding, post-translational modifications and protein-protein interactions impact thermal stability. Here, we sought to characterize the protein thermal stability changes induced by DZNep treatment in HEK293T cells using the Protein Integral Solubility Alteration (PISA) assay. DZNep treatment altered the thermal stability of 135 proteins, with over half previously reported to be methylated at lysine residues. In addition to thermal stability, we identify changes in transcript and protein abundance after DZNep treatment to distinguish between direct and indirect impacts on thermal stability. Nearly one-third of the proteins with altered thermal stability had no changes at the transcript or protein level. Of these thermally altered proteins, CDK6 had a stabilized methylated peptide, while its unmethylated counterpart was unaltered. Multiple methyltransferases were among the proteins with thermal stability alteration, including DNMT1, potentially due to changes in the SAM/SAH levels. This study systematically evaluates DZNep's impact on the transcriptome, the proteome, and the thermal stability of proteins.


Subject(s)
Adenosine , Protein Stability , Humans , HEK293 Cells , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine/chemistry , Protein Stability/drug effects , Methylation , Adenosylhomocysteinase/antagonists & inhibitors , Adenosylhomocysteinase/metabolism , Temperature
7.
Front Pharmacol ; 15: 1405446, 2024.
Article in English | MEDLINE | ID: mdl-38887549

ABSTRACT

Alcohol misuse is the third leading preventable cause of death in the world. The World Health Organization currently estimates that 1 in 20 deaths are directly alcohol related. One of the ways in which consuming excessive levels of alcohol can both directly and indirectly affect human mortality and morbidity, is through chronic inflammation. Recently, studies have suggested a link between increased alcohol use and the incidence of neuroinflammatory-related diseases. However, the mechanism in which alcohol potentially influences neuroinflammatory processes is still being uncovered. We implemented an unbiased proteomics exploration of alcohol-induced changes in the striatum, with a specific emphasis on proteins related to inflammation. The striatum is a brain region that is critically involved with the progression of alcohol use disorder. Using mass spectrometry following voluntary alcohol self-administration in mice, we show that distinct protein abundances and signaling pathways in different subregions of the striatum are disrupted by chronic exposure to alcohol compared to water drinking control mice. Further, in mice that were allowed to experience abstinence from alcohol compared to mice that were non-abstinent, the overall proteome and signaling pathways showed additional differences, suggesting that the responses evoked by chronic alcohol exposure are dependent on alcohol use history. To our surprise we did not find that chronic alcohol drinking or abstinence altered protein abundance or pathways associated with inflammation, but rather affected proteins and pathways associated with neurodegeneration and metabolic, cellular organization, protein translation, and molecular transport processes. These outcomes suggest that in this drinking model, alcohol-induced neuroinflammation in the striatum is not a primary outcome controlling altered neurobehavioral function, but these changes are rather mediated by altered striatal neuronal structure and cellular health.

8.
bioRxiv ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38798459

ABSTRACT

Background: Triple negative breast cancer (TNBC), characterized by the lack of three canonical receptors, is unresponsive to commonly used hormonal therapies. One potential TNBC-specific therapeutic target is NQO1, as it is highly expressed in many TNBC patients and lowly expressed in non-cancer tissues. DNA damage induced by NQO1 bioactivatable drugs in combination with Rucaparib-mediated inhibition of PARP1-dependent DNA repair synergistically induces cell death. Methods: To gain a better understanding of the mechanisms behind this synergistic effect, we used global proteomics, phosphoproteomics, and thermal proteome profiling to analyze changes in protein abundance, phosphorylation and protein thermal stability. Results: Very few protein abundance changes resulted from single or dual agent treatment; however, protein phosphorylation and thermal stability were impacted. Histone H2AX was among several proteins identified to have increased phosphorylation when cells were treated with the combination of IB-DNQ and Rucaparib, validating that the drugs induced persistent DNA damage. Thermal proteome profiling revealed destabilization of H2AX following combination treatment, potentially a result of the increase in phosphorylation. Kinase substrate enrichment analysis predicted altered activity for kinases involved in DNA repair and cell cycle following dual agent treatment. Further biophysical analysis of these two processes revealed alterations in SWI/SNF complex association and tubulin / p53 interactions. Conclusions: Our findings that the drugs target DNA repair and cell cycle regulation, canonical cancer treatment targets, in a way that is dependent on increased expression of a protein selectively found to be upregulated in cancers without impacting protein abundance illustrate that multi-omics methodologies are important to gain a deeper understanding of the mechanisms behind treatment induced cancer cell death.

9.
Am J Physiol Endocrinol Metab ; 327(2): E155-E171, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38630048

ABSTRACT

Spinophilin is an F-actin binding and protein phosphatase 1 (PP1) targeting protein that acts as a scaffold of PP1 to its substrates. Spinophilin knockout (Spino-/-) mice have decreased fat mass, increased lean mass, and improved glucose tolerance, with no difference in feeding behaviors. Although spinophilin is enriched in neurons, its roles in nonneuronal tissues, such as ß cells of the pancreatic islets, are unclear. We have corroborated and expanded upon previous studies to determine that Spino-/- mice have decreased weight gain and improved glucose tolerance in two different models of obesity. We have identified multiple putative spinophilin-interacting proteins isolated from intact pancreas and observed increased interactions of spinophilin with exocrine, ribosomal, and cytoskeletal protein classes that normally act to mediate peptide hormone production, processing, and/or release in Leprdb/db and/or high-fat diet-fed (HFF) models of obesity. In addition, we have found that spinophilin interacts with proteins from similar classes in isolated islets, suggesting a role for spinophilin in the pancreatic islet. Consistent with a pancreatic ß cell type-specific role for spinophilin, using our recently described conditional spinophilin knockout mice, we found that loss of spinophilin specifically in pancreatic ß cells improved glucose tolerance without impacting body weight in chow-fed mice. Our data further support the role of spinophilin in mediating pathophysiological changes in body weight and whole body metabolism associated with obesity. Our data provide the first evidence that pancreatic spinophilin protein interactions are modulated by obesity and that loss of spinophilin specifically in pancreatic ß cells impacts whole body glucose tolerance.NEW & NOTEWORTHY To our knowledge, these data are the first to demonstrate that obesity impacts spinophilin protein interactions in the pancreas and identify spinophilin specifically in pancreatic ß cells as a modulator of whole body glucose tolerance.


Subject(s)
Microfilament Proteins , Obesity , Pancreas , Insulin-Secreting Cells/physiology , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Obesity/complications , Obesity/genetics , Obesity/pathology , Pancreas/pathology , Pancreatic Diseases/pathology , Gene Knockout Techniques , Male , Female , Animals , Mice , Weight Gain/genetics , Diabetes Mellitus/pathology
10.
Pharmacol Res ; 201: 107092, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311014

ABSTRACT

AP endonuclease-1/Redox factor-1 (APE1/Ref-1 or Ref-1) is a multifunctional protein that is overexpressed in most aggressive cancers and impacts various cancer cell signaling pathways. Ref-1's redox activity plays a significant role in activating transcription factors (TFs) such as NFκB, HIF1α, STAT3 and AP-1, which are crucial contributors to the development of tumors and metastatic growth. Therefore, development of potent, selective inhibitors to target Ref-1 redox function is an appealing approach for therapeutic intervention. A first-generation compound, APX3330 successfully completed phase I clinical trial in adults with progressing solid tumors with favorable response rate, pharmacokinetics (PK), and minimal toxicity. These positive results prompted us to develop more potent analogs of APX3330 to effectively target Ref-1 in solid tumors. In this study, we present structure-activity relationship (SAR) identification and validation of lead compounds that exhibit a greater potency and a similar or better safety profile to APX3330. In order to triage and characterize the most potent and on-target second-generation Ref-1 redox inhibitors, we assayed for PK, mouse and human S9 fraction metabolic stability, in silico ADMET properties, ligand-based WaterLOGSY NMR measurements, pharmacodynamic markers, cell viability in multiple cancer cell types, and two distinct 3-dimensional (3D) cell killing assays (Tumor-Microenvironment on a Chip and 3D spheroid). To characterize the effects of Ref-1 inhibition in vivo, global proteomics was used following treatment with the top four analogs. This study identified and characterized more potent inhibitors of Ref-1 redox function (that outperformed APX3330 by 5-10-fold) with PK studies demonstrating efficacious doses for translation to clinic.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Neoplasms , Adult , Humans , Animals , Mice , Angiogenesis Inhibitors , Apoptosis , Biological Assay , Neoplasms/drug therapy , Tumor Microenvironment
11.
J Orthop Trauma ; 38(3): e111-e119, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38117580

ABSTRACT

OBJECTIVES: The objective of this study was to compare plasma proteomes of patients with confirmed fracture-related infections (FRIs) matched to noninfected controls using liquid chromatography-mass spectrometry. DESIGN: This was a prospective case-control study. SETTING: The study was conducted at a single, academic, Level 1 trauma center. PATIENT SELECTION CRITERIA: Patients meeting confirmatory FRI criteria were matched to controls without infection based on fracture region, age, and time after surgery from June 2019 to January 2022. Tandem mass tag liquid chromatography-mass spectrometry analysis of patient plasma samples was performed. OUTCOME MEASURES AND COMPARISONS: Protein abundance ratios in plasma for patients with FRI compared with those for matched controls without infection were calculated. RESULTS: Twenty-seven patients meeting confirmatory FRI criteria were matched to 27 controls. Abundance ratios for more than 1000 proteins were measured in the 54 plasma samples. Seventy-three proteins were found to be increased or decreased in patients with FRI compared with those in matched controls (unadjusted t test P < 0.05). Thirty-two of these proteins were found in all 54 patient samples and underwent subsequent principal component analysis to reduce the dimensionality of the large proteomics dataset. A 3-component principal component analysis accounted for 45.7% of the variation in the dataset and had 88.9% specificity for the diagnosis of FRI. STRING protein-protein interaction network analysis of these 3 PCs revealed activation of the complement and coagulation cascades through the Reactome pathway database (false discovery rates <0.05). CONCLUSIONS: Proteomic analyses of plasma from patients with FRI demonstrate systemic activation of the complement and coagulation cascades. Further investigation along these lines may help to better understand the systemic response to FRI and improve diagnostic strategies using proteomics. LEVEL OF EVIDENCE: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.


Subject(s)
Fractures, Bone , Proteomics , Humans , Case-Control Studies , Proteomics/methods , Fractures, Bone/diagnosis , Fractures, Bone/surgery
12.
Cell Rep ; 42(10): 113241, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37819759

ABSTRACT

Lysine succinylation is a subtype of protein acylation associated with metabolic regulation of succinyl-CoA in the tricarboxylic acid cycle. Deficiency of succinyl-CoA synthetase (SCS), the tricarboxylic acid cycle enzyme catalyzing the interconversion of succinyl-CoA to succinate, results in mitochondrial encephalomyopathy in humans. This report presents a conditional forebrain-specific knockout (KO) mouse model of Sucla2, the gene encoding the ATP-specific beta isoform of SCS, resulting in postnatal deficiency of the entire SCS complex. Results demonstrate that accumulation of succinyl-CoA in the absence of SCS leads to hypersuccinylation within the murine cerebral cortex. Specifically, increased succinylation is associated with functionally significant reduced activity of respiratory chain complex I and widescale alterations in chromatin landscape and gene expression. Integrative analysis of the transcriptomic data also reveals perturbations in regulatory networks of neuronal transcription in the KO forebrain. Together, these findings provide evidence that protein succinylation plays a significant role in the pathogenesis of SCS deficiency.


Subject(s)
Mitochondria , Succinate-CoA Ligases , Humans , Animals , Mice , Mitochondria/metabolism , Acyl Coenzyme A/metabolism , Succinate-CoA Ligases/genetics , Succinate-CoA Ligases/metabolism , Mice, Knockout
13.
Mol Cell Proteomics ; 22(9): 100630, 2023 09.
Article in English | MEDLINE | ID: mdl-37562535

ABSTRACT

Thermal proteome profiling (TPP) is an invaluable tool for functional proteomics studies that has been shown to discover changes associated with protein-ligand, protein-protein, and protein-RNA interaction dynamics along with changes in protein stability resulting from cellular signaling. The increasing number of reports employing this assay has not been met concomitantly with new approaches leading to advancements in the quality and sensitivity of the corresponding data analysis. The gap between data acquisition and data analysis tools is important to fill as TPP findings have reported subtle melt shift changes related to signaling events such as protein posttranslational modifications. In this study, we have improved the Inflect data analysis pipeline (now referred to as InflectSSP, available at https://CRAN.R-project.org/package=InflectSSP) to increase the sensitivity of detection for both large and subtle changes in the proteome as measured by TPP. Specifically, InflectSSP now has integrated statistical and bioinformatic functions to improve objective functional proteomics findings from the quantitative results obtained from TPP studies through increasing both the sensitivity and specificity of the data analysis pipeline. InflectSSP incorporates calculation of a "melt coefficient" into the pipeline with production of average melt curves for biological replicate studies to aid in identification of proteins with significant melts. To benchmark InflectSSP, we have reanalyzed two previously reported datasets to demonstrate the performance of our publicly available R-based program for TPP data analysis. We report new findings following temporal treatment of human cells with the small molecule thapsigargin that induces the unfolded protein response as a consequence of inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase 2A. InflectSSP analysis of our unfolded protein response study revealed highly reproducible and statistically significant target engagement over a time course of treatment while simultaneously providing new insights into the possible mechanisms of action of the small molecule thapsigargin.


Subject(s)
Proteome , Proteomics , Humans , Proteome/metabolism , Thapsigargin/pharmacology , Proteomics/methods
14.
Redox Biol ; 63: 102723, 2023 07.
Article in English | MEDLINE | ID: mdl-37146512

ABSTRACT

The retina is one of the highest oxygen-consuming tissues because visual transduction and light signaling processes require large amounts of ATP. Thus, because of the high energy demand, oxygen-rich environment, and tissue transparency, the eye is susceptible to excess production of reactive oxygen species (ROS) resulting in oxidative stress. Oxidative stress in the eye is associated with the development and progression of ocular diseases including cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy. ROS can modify and damage cellular proteins, but can also be involved in redox signaling. In particular, the thiol groups of cysteines can undergo reversible or irreversible oxidative post-translational modifications (PTMs). Identifying the redox-sensitive cysteines on a proteome-wide scale provides insight into those proteins that act as redox sensors or become irreversibly damaged upon exposure to oxidative stress. In this study, we profiled the redox proteome of the Drosophila eye under prolonged, high intensity blue light exposure and age using iodoacetamide isobaric label sixplex reagents (iodo-TMT) to identify changes in cysteine availability. Although redox metabolite analysis of the major antioxidant, glutathione, revealed similar ratios of its oxidized and reduced form in aged or light-stressed eyes, we observed different changes in the redox proteome under these conditions. Both conditions resulted in significant oxidation of proteins involved in phototransduction and photoreceptor maintenance but affected distinct targets and cysteine residues. Moreover, redox changes induced by blue light exposure were accompanied by a large reduction in light sensitivity that did not arise from a reduction in the photopigment level, suggesting that the redox-sensitive cysteines we identified in the phototransduction machinery might contribute to light adaptation. Our data provide a comprehensive description of the redox proteome of Drosophila eye tissue under light stress and aging and suggest how redox signaling might contribute to light adaptation in response to acute light stress.


Subject(s)
Cysteine , Proteome , Animals , Cysteine/metabolism , Proteome/metabolism , Drosophila melanogaster/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Oxidation-Reduction , Drosophila/metabolism , Light Signal Transduction , Oxygen
15.
Proc Natl Acad Sci U S A ; 120(22): e2220041120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216505

ABSTRACT

Histone modifications coupled to transcription elongation play important roles in regulating the accuracy and efficiency of gene expression. The monoubiquitylation of a conserved lysine in H2B (K123 in Saccharomyces cerevisiae; K120 in humans) occurs cotranscriptionally and is required for initiating a histone modification cascade on active genes. H2BK123 ubiquitylation (H2BK123ub) requires the RNA polymerase II (RNAPII)-associated Paf1 transcription elongation complex (Paf1C). Through its histone modification domain (HMD), the Rtf1 subunit of Paf1C directly interacts with the ubiquitin conjugase Rad6, leading to the stimulation of H2BK123ub in vivo and in vitro. To understand the molecular mechanisms that target Rad6 to its histone substrate, we identified the site of interaction for the HMD on Rad6. Using in vitro cross-linking followed by mass spectrometry, we localized the primary contact surface for the HMD to the highly conserved N-terminal helix of Rad6. Using a combination of genetic, biochemical, and in vivo protein cross-linking experiments, we characterized separation-of-function mutations in S. cerevisiae RAD6 that greatly impair the Rad6-HMD interaction and H2BK123 ubiquitylation but not other Rad6 functions. By employing RNA-sequencing as a sensitive approach for comparing mutant phenotypes, we show that mutating either side of the proposed Rad6-HMD interface yields strikingly similar transcriptome profiles that extensively overlap with those of a mutant that lacks the site of ubiquitylation in H2B. Our results fit a model in which a specific interface between a transcription elongation factor and a ubiquitin conjugase guides substrate selection toward a highly conserved chromatin target during active gene expression.


Subject(s)
Histones , Nuclear Proteins , Saccharomyces cerevisiae Proteins , TATA-Box Binding Protein , Ubiquitin-Conjugating Enzymes , gamma-Glutamyl Hydrolase , Histones/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism
16.
iScience ; 26(4): 106541, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37102148

ABSTRACT

Skeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.

17.
iScience ; 26(4): 106425, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37034982

ABSTRACT

Intracellular α-ketoglutarate is an indispensable substrate for the Jumonji family of histone demethylases (JHDMs) mediating most of the histone demethylation reactions. Since α-ketoglutarate is an intermediate of the tricarboxylic acid cycle and a product of transamination, its availability is governed by the metabolism of several amino acids. Here, we show that asparagine starvation suppresses global histone demethylation. This process is neither due to the change of expression of histone-modifying enzymes nor due to the change of intracellular levels of α-ketoglutarate. Rather, asparagine starvation reduces the intracellular pool of labile iron, a key co-factor for the JHDMs to function. Mechanistically, asparagine starvation suppresses the expression of the transferrin receptor to limit iron uptake. Furthermore, iron supplementation to the culture medium restores histone demethylation and alters gene expression to accelerate cell death upon asparagine depletion. These results suggest that suppressing iron-dependent histone demethylation is part of the cellular adaptive response to asparagine starvation.

18.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902150

ABSTRACT

Calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) regulates bone remodeling through its effects on osteoblasts and osteoclasts. However, its role in osteocytes, the most abundant bone cell type and the master regulator of bone remodeling, remains unknown. Here we report that the conditional deletion of CaMKK2 from osteocytes using Dentine matrix protein 1 (Dmp1)-8kb-Cre mice led to enhanced bone mass only in female mice owing to a suppression of osteoclasts. Conditioned media isolated from female CaMKK2-deficient osteocytes inhibited osteoclast formation and function in in vitro assays, indicating a role for osteocyte-secreted factors. Proteomics analysis revealed significantly higher levels of extracellular calpastatin, a specific inhibitor of calcium-dependent cysteine proteases calpains, in female CaMKK2 null osteocyte conditioned media, compared to media from female control osteocytes. Further, exogenously added non-cell permeable recombinant calpastatin domain I elicited a marked, dose-dependent inhibition of female wild-type osteoclasts and depletion of calpastatin from female CaMKK2-deficient osteocyte conditioned media reversed the inhibition of matrix resorption by osteoclasts. Our findings reveal a novel role for extracellular calpastatin in regulating female osteoclast function and unravel a novel CaMKK2-mediated paracrine mechanism of osteoclast regulation by female osteocytes.


Subject(s)
Osteoclasts , Osteocytes , Animals , Female , Mice , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Culture Media, Conditioned/pharmacology , Osteoclasts/metabolism , Osteocytes/metabolism , Sex Characteristics
19.
bioRxiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36798361

ABSTRACT

Objective: Spinophilin is an F-actin binding and protein phosphatase 1 (PP1) targeting protein that acts as a scaffold of PP1 to its substrates. Spinophilin knockout (Spino-/-) mice have decreased fat mass, increased lean mass, and improved glucose tolerance, with no difference in feeding behaviors. While spinophilin is enriched in neurons, its roles in non-neuronal tissues, such as beta cells of the pancreatic islets, are unclear. Methods & Results: We have corroborated and expanded upon previous studies to determine that Spino-/- mice have decreased weight gain and improved glucose tolerance in two different models of obesity. Using proteomics and immunoblotting-based approaches we identified multiple putative spinophilin interacting proteins isolated from intact pancreas and observed increased interactions of spinophilin with exocrine, ribosomal, and cytoskeletal protein classes that mediate peptide hormone production, processing, and/or release in Leprdb/db and/or high fat-fed (HFF) models of obesity. Moreover, loss of spinophilin specifically in pancreatic beta cells improved glucose tolerance without impacting body weight. Conclusion: Our data further support a role for spinophilin in mediating pathophysiological changes in body weight and whole-body metabolism associated with obesity and provide the first evidence that spinophilin mediates obesity-dependent pancreatic dysfunction that leads to deficits in glucose homeostasis or diabesity.

20.
Biol Psychiatry ; 93(11): 976-988, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36822932

ABSTRACT

BACKGROUND: Grooming dysfunction is a hallmark of the obsessive-compulsive spectrum disorder trichotillomania. Numerous preclinical studies have utilized SAPAP3-deficient mice for understanding the neurobiology of repetitive grooming, suggesting that excessive grooming is caused by increased metabotropic glutamate receptor 5 (mGluR5) activity in striatal direct- and indirect-pathway medium spiny neurons (MSNs). However, the MSN subtype-specific signaling mechanisms that mediate mGluR5-dependent adaptations underlying excessive grooming are not fully understood. Here, we investigated the MSN subtype-specific roles of the striatal signaling hub protein spinophilin in mediating repetitive motor dysfunction associated with mGluR5 function. METHODS: Quantitative proteomics and immunoblotting were utilized to identify how spinophilin impacts mGluR5 phosphorylation and protein interaction changes. Plasticity and repetitive motor dysfunction associated with mGluR5 action were measured using our novel conditional spinophilin mouse model in which spinophilin was knocked out from striatal direct-pathway MSNs and/or indirect-pathway MSNs. RESULTS: Loss of spinophilin only in indirect-pathway MSNs decreased performance of a novel motor repertoire, but loss of spinophilin in either MSN subtype abrogated striatal plasticity associated with mGluR5 function and prevented excessive grooming caused by SAPAP3 knockout mice or treatment with the mGluR5-specific positive allosteric modulator VU0360172 without impacting locomotion-relevant behavior. Biochemically, we determined that the spinophilin-mGluR5 interaction correlates with grooming behavior and that loss of spinophilin shifts mGluR5 interactions from lipid raft-associated proteins toward postsynaptic density proteins implicated in psychiatric disorders. CONCLUSIONS: These results identify spinophilin as a novel striatal signaling hub molecule in MSNs that cell subtype specifically mediates behavioral, functional, and molecular adaptations associated with repetitive motor dysfunction in psychiatric disorders.


Subject(s)
Post-Synaptic Density , Receptor, Metabotropic Glutamate 5 , Animals , Mice , Corpus Striatum/metabolism , Grooming/physiology , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Post-Synaptic Density/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL