Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25871206

ABSTRACT

A numerical and experimental investigation of the acoustic streaming flow in the near field of a circular plane ultrasonic transducer in water is performed. The experimental domain is a parallelepipedic cavity delimited by absorbing walls to avoid acoustic reflection, with a top free surface. The flow velocities are measured by particle image velocimetry, leading to well-resolved velocity profiles. The theoretical model is based on a linear acoustic propagation model, which correctly reproduces the acoustic field mapped experimentally using a hydrophone, and an acoustic force term introduced in the Navier-Stokes equations under the plane-wave assumption. Despite the complexity of the acoustic field in the near field, in particular in the vicinity of the acoustic source, a good agreement between the experimental measurements and the numerical results for the velocity field is obtained, validating our numerical approach and justifying the planar wave assumption in conditions where it is a priori far from obvious. The flow structure is found to be correlated with the acoustic field shape. Indeed, the longitudinal profiles of the velocity present a wavering linked to the variations in acoustic intensity along the beam axis and transverse profiles exhibit a complex shape strongly influenced by the transverse variations of the acoustic intensity in the beam. Finally, the velocity in the jet is found to increase as the square root of the acoustic force times the distance from the origin of the jet over a major part of the cavity, after a strong short initial increase, where the velocity scales with the square of the distance from the upstream wall.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 2): 016312, 2012 Jul.
Article in English | MEDLINE | ID: mdl-23005530

ABSTRACT

This study is a linear stability analysis of the flows induced by ultrasound acoustic waves (Eckart streaming) within an infinite horizontal fluid layer heated from below. We first investigate the dependence of the instability threshold on the normalized acoustic beam width H(b) for an isothermal fluid layer. The critical curve, given by the critical values of the acoustic streaming parameter, A(c), has a minimum for a beam width H(b) ≈ 0.32. This curve, which corresponds to the onset of oscillatory instabilities, compares well with that obtained for a two-dimensional cavity of large aspect ratio [A(x) = (length/height) = 10]. For a fluid layer heated from below subject to acoustic waves (the Rayleigh-Bénard-Eckart problem), the influence of the acoustic streaming parameter A on the stability threshold is investigated for various values of the beam width H(b) and different Prandtl numbers Pr. It is shown that, for not too small values of the Prandtl number (Pr > Pr(l)), the acoustic streaming delays the appearance of the instabilities in some range of the acoustic streaming parameter A. The critical curves display two behaviors. For small or moderate values of A, the critical Rayleigh number Ra(c) increases with A up to a maximum. Then, when A is further increased, Ra(c) undergoes a decrease and eventually goes to 0 at A = A(c), i.e., at the critical value of the isothermal case. Large beam widths and large Prandtl numbers give a better stabilizing effect. In contrast, for Prandtl numbers below the limiting value Pr(l) (which depends on H(b)), stabilization cannot be obtained. The instabilities in the Rayleigh-Bénard-Eckart problem are oscillatory and correspond to right- or left-traveling waves, depending on the parameter values. Finally, energy analyses of the instabilities at threshold have indicated that the change of the thresholds can be connected to the modifications induced by the streaming flow on the critical perturbations.


Subject(s)
Models, Theoretical , Rheology/methods , Sound , Ultrasonography/methods , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL