Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Mar Genomics ; 62: 100934, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35246306

ABSTRACT

Direct sequencing of mRNA isolated from environmental samples has been commonly used to analyze the functional activity of ambient communities and, occasionally used for taxonomic identification. Here we assess the viability of using mRNA for investigating the species composition of marine benthic eukaryotes. Total RNA was extracted from sediments sampled close to fish farms and mRNA was sequenced after poly-A enrichment on an Illumina MiSeq sequencer. We investigated the origin of both raw reads and assembled contigs by aligning them to the NCBI non-redundant (nr/nt) nucleotide database. Although sequences were predominantly of eukaryotic origin, the analyses were complicated both by experimental and database artefacts. These issues were addressed by applying filtering procedures that removed the majority of ambiguous sequences from downstream analyses. These processes resulted in a set of 436 high-confidence contigs, the vast majority of which mapped to benthic organisms. Our alignments were dominated by annelids, consistent with burrowing groups found in a parallel morphological analysis. This study shows that it is possible to obtain adequate taxonomic information from the RNA of an eukaryotic community from a limited sample at a moderate cost, demonstrates how both laboratory and in silico artefacts can be overcome through appropriate bioinformatic procedures, and finally highlights some of the drawbacks and caveats of using NCBI as a reference database for such a dataset.


Subject(s)
Eukaryota , High-Throughput Nucleotide Sequencing , Computational Biology , Eukaryota/genetics , High-Throughput Nucleotide Sequencing/methods , RNA, Messenger/genetics
2.
Horm Behav ; 130: 104930, 2021 04.
Article in English | MEDLINE | ID: mdl-33497708

ABSTRACT

The predictable oscillation between the light of day and the dark of night across the diel cycle is a powerful selective force that has resulted in anticipatory mechanisms in nearly all taxa. At polar latitude, however, this oscillation becomes highly attenuated during the continuous light of polar day during summer. A general understanding of how animals keep time under these conditions is poorly understood. We tested the hypothesis that the common murre (a seabird, Uria aalge) can use melatonin and corticosterone, hormones associated with timekeeping, to track the diel cycle despite continuous light. We also tested the assumption that common murres breeding during polar summer schedule their colony attendance by time of day and sex, as they do at subpolar latitude. In the Atlantic population, common murres have a plumage color dimorphism associated with fitness-related traits, and we investigated the relationship of this dimorphism with colony attendance, melatonin, and corticosterone. The common murres did not schedule their attendance behavior by time of day or sex, yet they had higher concentrations of melatonin and, to a more limited extent, corticosterone during "night" than "day". Melatonin also linked to behavioral state. The two color morphs tended to have different colony-attendance behavior and melatonin concentrations, lending support for balancing selection maintaining the plumage dimorphism. In common murres, melatonin can signal time of day despite continuous light, and the limited diel variation of corticosterone contributes to the mounting evidence that polar-adapted birds and mammals require little or no diel variation in circulating glucocorticoids during polar day.


Subject(s)
Circadian Rhythm , Melatonin , Animals , Birds , Corticosterone , Light , Sex Characteristics
3.
PLoS One ; 15(2): e0229318, 2020.
Article in English | MEDLINE | ID: mdl-32050006

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0227223.].

4.
PLoS One ; 15(1): e0227223, 2020.
Article in English | MEDLINE | ID: mdl-31910238

ABSTRACT

Several starfish (Echinodermata, Asteroidea) are keystone species of marine ecosystems, but some of the species are difficult to identify using morphological criteria only. The common sunstar, Crossaster papposus (Linnaeus, 1767), is a conspicuous species with a wide circumboreal distribution. In 1900, a closely similar species, C. squamatus (Döderlein, 1900) was described from the NE Atlantic Ocean, but subsequent authors have differed in their views on whether this is a valid taxon or rather an ecotype associated with temperature variations. We assessed the differentiating morphological characters of specimens from Norwegian and Greenland waters identified as C. papposus and C. squamatus and compared their distributions in the NE Atlantic as inferred from research cruises. The field data show that C. papposus is found mainly in temperate and shallow waters, whereas C. squamatus resides on the shelf-break in colder, mixed water masses. Intraspecific diversity and interspecific genetic differentiation of the two putative species, and their phylogenetic relationships to several Crossaster congeners worldwide, were explored using mitochondrial and nuclear DNA sequences. The molecular evidence suggests that C. papposus is the more diverse and geographically structured taxon, in line with its wide distribution. C. papposus and C. squamatus are closely related, yet clearly distinct taxa, while C. papposus and C. multispinus H.L. Clark, 1916, the latter from the South Pacific Ocean, are closely related, possibly sister taxa.


Subject(s)
Animal Distribution , Starfish/genetics , Animals , Atlantic Ocean , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/isolation & purification , Greenland , Norway , Pacific Ocean , Phylogeny , Sequence Analysis, DNA , Starfish/classification , Temperature
5.
Biol Lett ; 15(10): 20190594, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31594494

ABSTRACT

Genome studies in fish provide evidence for the adaptability of the vertebrate immune system, revealing alternative immune strategies. The reported absence of the major compatibility complex (MHC) class II pathway components in certain species of pipefish (genus Syngnathus) and cod-like fishes (order Gadiformes) is of particular interest. The MHC II pathway is responsible for immunization and defence against extracellular threats through the presentation of exogenous peptides to T helper cells. Here, we demonstrate the absence of all genes encoding MHC II components (CD4, CD74 A/B, and both classical and non-classical MHC II α/ß) in the genome of an anglerfish, Lophius piscatorius, indicating loss of the MHC II pathway. By contrast, it has previously been reported that another anglerfish, Antennarius striatus, retains all MHC II genes, placing the loss of MHC II in the Lophius clade to their most recent common ancestor. In the three taxa where MHC II loss has occurred, the gene loss has been restricted to four or five core MHC II components, suggesting that, in teleosts, only these genes have functions that are restricted to the MHC II pathway.


Subject(s)
Fishes , Vertebrates , Animals , Genome
6.
Gene ; 692: 195-200, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30641219

ABSTRACT

Mitochondrial genome organization of sea anemones appears conserved among species and families, and is represented by a single circular DNA molecule of 17 to 21 kb. The mitochondrial gene content corresponds to the same 13 protein components of the oxidative phosphorylation (OxPhos) system as in vertebrates. Hallmarks, however, include a highly reduced tRNA gene repertoire and the presence of autocatalytic group I introns. Here we demonstrate that the mitochondrial genome of the deep-water sea anemone Protanthea simplex deviates significantly from that of other known sea anemones. The P. simplex mitochondrial genome contains a heavily scrambled order of genes that are coded on both DNA strands and organized along two circular mito-chromosomes, MCh-I and MCh-II. We found MCh-I to be representative of the prototypic sea anemone mitochondrial genome, encoding 12 OxPhos proteins, two ribosomal RNAs, two transfer RNAs, and a group I intron. In contrast, MCh-II was found to be a laterally transferred plasmid-like DNA carrying the conserved cytochrome oxidase II gene and a second allele of the small subunit ribosomal RNA gene.


Subject(s)
Chromosomes , Genome, Mitochondrial , Sea Anemones/genetics , Animals , Biological Evolution , Electron Transport Complex IV/genetics , Gene Transfer, Horizontal , Introns , Oxidative Phosphorylation , Phylogeny , RNA, Ribosomal/genetics
7.
Microbiologyopen ; 8(4): e00672, 2019 04.
Article in English | MEDLINE | ID: mdl-29897674

ABSTRACT

Host-associated microbiota undergoes a continuous transition, from the birth to adulthood of the host. These developmental stage-related transitions could lead to specific microbial signatures that could impact the host biological processes. In this study, the succession of early-life and intestinal bacterial communities of Atlantic salmon (starting from embryonic stages to 80-week post hatch; wph) was studied using amplicon sequencing of 16S rRNA. Stage-specific bacterial community compositions and the progressive transitions of the communities were evident in both the early life and the intestine. The embryonic communities showed lower richness and diversity (Shannon and PD whole tree) compared to the hatchlings. A marked transition of the intestinal communities also occurred during the development; Proteobacteria were dominant in the early stages (both embryonic and intestinal), though the abundant genera under this phylum were stage-specific. Firmicutes were the most abundant group in the intestine of late freshwater; Weissella being the dominant genus at 20 wph and Anaerofilum at 62 wph. Proteobacteria regained its dominance after the fish entered seawater. Furthermore, LEfSe analysis identified genera under the above - mentioned phyla that are significant features of specific stages. The environmental (water) bacterial community was significantly different from that of the fish, indicating that the host is a determinant of microbial assemblage. Overall the study demonstrated the community dynamics during the development of Atlantic salmon.


Subject(s)
Bacteria/isolation & purification , Gastrointestinal Microbiome , Intestines/microbiology , Salmo salar/microbiology , Animals , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/genetics , Intestines/embryology , Phylogeny , RNA, Ribosomal, 16S/genetics , Salmo salar/embryology , Seawater/microbiology , Species Specificity
8.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(2): 307-311, 2019 03.
Article in English | MEDLINE | ID: mdl-30198386

ABSTRACT

A heteroplasmic tandem repeat (HTR) array occupies 100 to 300 bp of the mitochondrial DNA control region in the Atlantic cod, and recently we noted that the repeat appeared integrated in a polyadenylated mitochondrial long noncoding RNA. Here we provide a more detailed analysis of the mitochondrial HTR in the mitochondrial genome of 134 Atlantic cod specimens. We report all specimens to harbor mitochondrial HTRs in the control region, and identified 26 distinct variants among the 402 repeat motifs assessed. Whereas most specimens contained HTR profiles of 2-5 copies consisting of the same 40-bp motif, 22 specimens showed compound HTR arrays of at least two types of motifs present in the same mitochondrial DNA molecule. We found HTR profiles to be highly conserved between different tissue types of a single individual, and strictly maternally inherited in a mating experiment between parental Atlantic cod expressing different HTR profiles and array motifs. We conclude that mitochondrial heteroplasmy in the control region is very common in Atlantic cod, and results in length heterogenity of the long noncoding RNA lncCR-H.


Subject(s)
DNA, Mitochondrial/genetics , Gadus morhua/genetics , RNA, Long Noncoding/genetics , Tandem Repeat Sequences , Animals , Maternal Inheritance , Polymorphism, Genetic
9.
BMC Res Notes ; 11(1): 397, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921324

ABSTRACT

OBJECTIVE: The objective of this study was to analyse intraspecific sequence variation of Atlantic cod mitochondrial DNA, based on a comprehensive collection of completely sequenced mitochondrial genomes. RESULTS: We determined the complete mitochondrial DNA sequence of 124 cod specimens from the eastern and western part of the species' distribution range in the North Atlantic Ocean. All specimens harboured a unique mitochondrial DNA haplotype. Nine hundred and fifty-two polymorphic sites were identified, including 109 non-synonymous sites within protein coding regions. Eighteen variable sites were identified as indels, exclusively distributed in structural RNA genes and non-coding regions. Phylogeographic analyses based on 156 available cod mitochondrial genomes did not reveal a clear structure. There was a lack of mitochondrial genetic differentiation between two ecotypes of cod in the eastern North Atlantic, but eastern and western cod were differentiated and mitochondrial genome diversity was higher in the eastern than the western Atlantic, suggesting deviating population histories. The geographic distribution of mitochondrial genome variation seems to be governed by demographic processes and gene flow among ecotypes that are otherwise characterized by localized genomic divergence associated with chromosomal inversions.


Subject(s)
DNA, Mitochondrial/genetics , Gadus morhua/genetics , Animals , Genome , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
10.
Ecol Evol ; 5(6): 1306-17, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25859335

ABSTRACT

In many seabird studies, single annual proxies of prey abundance have been used to explain variability in breeding performance, but much more important is probably the timing of prey availability relative to the breeding season when energy demand is at a maximum. Until now, intraseasonal variation in prey availability has been difficult to quantify in seabirds. Using a state-of-the-art ocean drift model of larval cod Gadus morhua, an important constituent of the diet of common guillemots Uria aalge in the southwestern Barents Sea, we were able to show clear, short-term correlations between food availability and measurements of the stress hormone corticosterone (CORT) in parental guillemots over a 3-year period (2009-2011). The model allowed the extraction of abundance and size of cod larvae with very high spatial (4 km) and temporal resolutions (1 day) and showed that cod larvae from adjacent northern spawning grounds in Norway were always available near the guillemot breeding colony while those from more distant southerly spawning grounds were less frequent, but larger. The latter arrived in waves whose magnitude and timing, and thus overlap with the guillemot breeding season, varied between years. CORT levels in adult guillemots were lower in birds caught after a week with high frequencies of southern cod larvae. This pattern was restricted to the two years (2009 and 2010) in which southern larvae arrived before the end of the guillemot breeding season. Any such pattern was masked in 2011 by already exceptionally high numbers of cod larvae in the region throughout chick-rearing period. The findings suggest that CORT levels in breeding birds increase when the arrival of southern sizable larvae does not match the period of peak energy requirements during breeding.

11.
BMC Evol Biol ; 14: 182, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25145347

ABSTRACT

BACKGROUND: Vertebrate mitogenomes are economically organized and usually lack intergenic sequences other than the control region. Intergenic spacers located between the tRNA(Thr) and tRNA(Pro) genes ("T-P spacers") have been observed in several taxa, including gadiform species, but information about their biological roles and putative functions is still lacking. RESULTS: Sequence characterization of the complete European hake Merluccius merluccius mitogenome identified a complex T-P spacer ranging in size from 223-532 bp. Further analyses of 32 gadiform species, representing 8 families and 28 genera, revealed the evolutionary preserved presence of T-P spacers across all taxa. Molecular complexity of the T-P spacers was found to be coherent with the phylogenetic relationships, supporting a common ancestral origin and gain of function during codfish evolution. Intraspecific variation of T-P spacer sequences was assessed in 225 Atlantic cod specimens and revealed 26 haplotypes. Pyrosequencing data representing the mito-transcriptome poly (A) fraction in Atlantic cod identified an abundant H-strand specific long noncoding RNA of about 375 nt. The T-P spacer corresponded to the 5' part of this transcript, which terminated within the control region in a tail-to-tail configuration with the L-strand specific transcript (the 7S RNA). CONCLUSIONS: The T-P spacer is inferred to be evolutionary preserved in gadiform mitogenomes due to gain of function through a long noncoding RNA. We suggest that the T-P spacer adds stability to the H-strand specific long noncoding RNA by forming stable hairpin structures and additional protein binding sites.


Subject(s)
Conserved Sequence , DNA, Intergenic/genetics , Evolution, Molecular , Gadiformes/genetics , Genome, Mitochondrial/genetics , RNA, Long Noncoding/genetics , Animals , Phylogeny , RNA, Transfer/genetics
12.
Mol Phylogenet Evol ; 75: 184-93, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24613805

ABSTRACT

A notable feature of hexacoral mitogenomes is the presence of complex self-catalytic group I introns. We investigated mitogenome structural variations and evolutionary mechanisms in actiniarian sea anemones based on the complete mitogenome sequence of the cold-water sea anemone species Urticina eques, Bolocera tuediae, Hormathia digitata and Metridium senile, and two isolates of the sub-tropical Aiptasia pulchella. Whole genome sequencing at 50 times coverage of B. tuediae and H. digitata indicated low mtDNA copy number of per haploid nuclear genome and presence of rare haplotypes. A group I intron inserted in ND5 was found to host essential mitochondrial protein genes in all species, and an additional truncated copy of ND5 in B. tuediae. A second group I intron (inserted in COI) that contained a homing endonuclease gene (HEG) was present in all mtDNA examined. Different variants of HEGs were observed, and included expressed elements fused in-frame with upstream exons and free-standing HEGs embedded within the intron. A notable hallmark of HEGs was a high extent of overlap with ribozyme structural elements; the U. eques HEG overlapped with the entire intron. We reconstructed the evolutionary history of the COI intron from insertion at unoccupied cognate sites, through HEG degradation, to intron loss. We also identified a novel insertion element in U. eques that contained two expressed protein-coding genes. An evolutionary analysis of the sea anemone mtDNA genes revealed higher substitution rates in the HEG and the insertion sequence as compared to the other loci, indicating relaxed selective pressures in these elements. We conclude that sea anemone mitogenomes are surprisingly dynamic in structure despite the economical organization and low sequence mutation rate.


Subject(s)
DNA Transposable Elements , Genome, Mitochondrial , Introns , Phylogeny , Sea Anemones/genetics , Animals , Base Sequence , Biological Evolution , DNA, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Mutagenesis, Insertional , Nucleic Acid Conformation , Sequence Analysis, DNA
13.
Mar Genomics ; 15: 103-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24456931

ABSTRACT

Sequencing of mitochondrial gene fragments from specimens representing a wide range of geographical locations has indicated limited population structuring in Atlantic cod (Gadus morhua). We recently performed whole genome analysis based on next-generation sequencing of two pooled ecotype samples representing offshore migratory and inshore stationary cod from the North-east Atlantic Ocean. Here we report molecular features and variability of the 16.7kb mitogenome component that was collected from the datasets. These sequences represented more than 25 times coverage of each individual and more than 1100 times coverage of each ecotype sample. We estimated the mitogenome to have evolved 14 times more rapidly than the nuclear genome. Among the 365 single nucleotide polymorphism (SNP) sites identified, 121 were shared between ecotypes, and 151 and 93 were private within the migratory and stationary cod, respectively. We found 323 SNPs to be located in protein coding genes, of which 29 were non-synonymous. One synonymous site in ND2 was likely to be under positive selection. FST measurements indicated weak differentiation in ND1 and ND2 between ecotypes. We conclude that the Atlantic cod mitogenome and the nuclear genome apparently evolved by distinct evolutionary constraints, and that the reproductive isolation observed from whole genome analysis was not visible in the mtDNA sequences.


Subject(s)
Ecosystem , Evolution, Molecular , Gadus morhua/genetics , Genetic Variation/genetics , Genetics, Population , Genome, Mitochondrial/genetics , Animals , Atlantic Ocean , Base Sequence , Molecular Sequence Data , NADH Dehydrogenase/genetics , Polymorphism, Single Nucleotide/genetics , Reproductive Isolation , Selection, Genetic , Sequence Analysis, DNA
14.
Mol Ecol ; 22(20): 5098-111, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23998762

ABSTRACT

Atlantic cod displays a range of phenotypic and genotypic variations, which includes the differentiation into coastal stationary and offshore migratory types of cod that co-occur in several parts of its distribution range and are often sympatric on the spawning grounds. Differentiation of these ecotypes may involve both historical separation and adaptation to ecologically distinct environments, the genetic basis of which is now beginning to be unravelled. Genomic analyses based on recent sequencing advances are able to document genomic divergence in more detail and may facilitate the exploration of causes and consequences of genome-wide patterns. We examined genomic divergence between the stationary and migratory types of cod in the Northeast Atlantic, using next-generation sequencing of pooled DNA from each of two population samples. Sequence data was mapped to the published cod genome sequence, arranged in more than 6000 scaffolds (611 Mb). We identified 25 divergent scaffolds (26 Mb) with a higher than average gene density, against a backdrop of overall moderate genomic differentiation. Previous findings of localized genomic divergence in three linkage groups were confirmed, including a large (15 Mb) genomic region, which seems to be uniquely involved in the divergence of migratory and stationary cod. The results of the pooled sequencing approach support and extend recent findings based on single-nucleotide polymorphism markers and suggest a high degree of reproductive isolation between stationary and migratory cod in the North-east Atlantic.


Subject(s)
Animal Migration , Ecotype , Gadus morhua/genetics , Genetics, Population , Animals , Atlantic Ocean , Genetic Linkage , Genotype , Polymorphism, Single Nucleotide , Reproductive Isolation , Sequence Analysis, DNA
15.
Environ Toxicol Chem ; 32(11): 2520-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23861300

ABSTRACT

The extent to which persistent organic pollutants (POPs) with different physicochemical properties originated from the food (dietary input) was assessed in raptor nestlings. Lipophilic polychlorinated biphenyl (PCB) 153, 1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE), and hexachlorobenzene (HCB), and protein-bound perfluorooctane sulfonate (PFOS), were measured repeatedly in blood plasma of individual goshawk (Accipiter gentilis) and white-tailed eagle (Haliaeetus albicilla) nestlings, 1 to 3 wk after hatching and near fledging. Maternally derived POPs dilute as nestlings grow (growth dilution), and increasing plasma concentrations would indicate dietary input. First, plasma concentrations given no dietary input were estimated, and concentrations of p,p'-DDE, HCB, and notably PFOS were significantly higher than predicted from a growth-dilution scenario (approximately 1.5-fold to 2.5-fold higher; p < 0.001). In contrast, PCB 153 declined in both species, although concentrations were still higher than predicted in white-tailed eagle nestlings (p < 0.05). Second, the relationships between plasma POP concentrations and trophic position (δ(15) N) and dietary carbon source (δ(13) C) were analyzed, controlling for growth rate. Both δ(15) N and δ(13) C (measured in body feathers) were significantly associated to the accumulation of most POPs, except PFOS. In conclusion, pollutant data acquired in plasma of nestling raptors should be interpreted and further investigated in the light of individual feeding ecology, and the use of raptor nestlings as sentinels for POP monitoring could be optimized by correcting for different factors such as body condition, brood size, and age.


Subject(s)
Dichlorodiphenyl Dichloroethylene/blood , Environmental Pollutants/blood , Falconiformes/blood , Falconiformes/growth & development , Hexachlorobenzene/blood , Polychlorinated Biphenyls/blood , Animals , Dichlorodiphenyl Dichloroethylene/toxicity , Eagles/blood , Eagles/growth & development , Environmental Pollutants/toxicity , Food , Hexachlorobenzene/toxicity , Polychlorinated Biphenyls/toxicity , Species Specificity
16.
Environ Int ; 57-58: 25-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23632440

ABSTRACT

Top predators in northern ecosystems may suffer from exposure to persistent organic pollutants (POPs) as this exposure may synergistically interact with already elevated natural stress in these ecosystems. In the present study, we aimed at identifying biological (sex, body condition), ecological (dietary carbon source, trophic level) and spatial factors (local habitat, regional nest location) that may influence intra- and interspecific variation in exposure of subarctic predatory bird nestlings to polychlorinated biphenyl 153 (CB 153), polybrominated diphenyl ether 47 (BDE 47), dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlorobenzene (HCB). During three breeding seasons (2008-2010), we sampled body feathers from fully-grown nestlings of three ecologically distinct predatory bird species in subarctic Norway: Northern Goshawk (Accipiter gentilis), White-tailed Eagle (Haliaeetus albicilla) and Golden Eagle (Aquila chrysaetos). The present study analysed, for the first time, body feathers for both POPs and carbon (δ(13)C) and nitrogen (δ(15)N) stable isotopes, thus integrating the dietary carbon source, trophic level and POP exposure for the larger part of the nestling stage. Intraspecific variation in exposure was driven by a combination of ecological and spatial factors, often different for individual compounds. In addition, combinations for individual compounds differed among species. Trophic level and local habitat were the predominant predictors for CB 153, p,p'-DDE and BDE 47, indicating their biomagnification and decreasing levels according to coast>fjord>inland. Variation in exposure may also have been driven by inter-annual variation arisen from primary sources (e.g. p,p'-DDE) and/or possible revolatilisation from secondary sources (e.g. HCB). Interspecific differences in POP exposure were best explained by a combination of trophic level (biomagnification), dietary carbon source (food chain discrimination) and regional nest location (historical POP contamination). In conclusion, the combined analysis of POPs and stable isotopes in body feathers from fully-grown nestlings has identified ecological and spatial factors that may drive POP exposure over the larger part of the nestling stage. This methodological approach further promotes the promising use of nestling predatory bird body feathers as a non-destructive sampling strategy to integrate various toxicological and ecological proxies.


Subject(s)
Environmental Pollutants/analysis , Falconiformes , Feathers/chemistry , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Animals , Ecology , Environmental Monitoring , Food Chain , Norway
17.
Ecol Evol ; 3(16): 5157-66, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24455145

ABSTRACT

Parasites are natural stressors that may have multiple negative effects on their host as they usurp energy and nutrients and may lead to costly immune responses that may cause oxidative stress. At early stages, animals may be more sensitive to infectious organisms because of their rapid growth and partly immature immune system. The objective of this study was to explore effects of parasites by treating chicks of two raptor species (northern goshawk Accipiter gentilis and white-tailed sea eagle Haliaeetus albicilla) against both endoparasites (internal parasites) and ectoparasites (external parasites). Nests were either treated against ectoparasites by spraying with pyrethrin or left unsprayed as control nests. Within each nest, chicks were randomly orally treated with either an antihelminthic medication (fenbendazole) or sterile water as control treatment. We investigated treatment effects on plasma (1) total antioxidant capacity TAC (an index of nonenzymatic circulating antioxidant defenses), (2) total oxidant status TOS (a measure of plasmatic oxidants), and (3) immunoglobulin levels (a measure of humoral immune function). Treatment against ectoparasites led to a reduction in circulating immunoglobulin plasma levels in male chicks. TOS was higher when not receiving any parasite reduction treatment and when receiving both endo- and ectoparasitic reduction treatment compared with receiving only one treatment. TAC was higher in all treatment groups, when compared to controls. Despite the relatively low sample size, this experimental study suggests complex but similar relationships between treatment groups and oxidative status and immunoglobulin levels in two raptor species.

18.
Gene ; 506(2): 344-9, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22759520

ABSTRACT

We present an initial genomic analysis of the non-symbiotic scleractinian coral Lophelia pertusa, the dominant cold-water reef-building coral species in the North Atlantic Ocean. A significant fraction of the deep sequencing reads was of mitochondrial and microbial origins. SOLiD deep sequencing reads from fragment library experiments of total DNA and PCR amplified mitogenome generated about 21,000 times and 136,000 times coverage, respectively, of the 16,150 bp mitogenome. Five polymorphic sites that include two non-synonymous sites in the NADH dehydrogenase subunit 5 genes were detected in both experiments. This observation is surprising since anthozoans in general exhibit very low mtDNA sequence variation at intraspecific level compared to nuclear sequences. More than fifty bacterial species associated with the coral isolate were also sequence detected, representing at least ten complete genomes. Most reads, however, were predicted to originate from the Lophelia nuclear genome.


Subject(s)
Anthozoa/genetics , Genome , Polymorphism, Genetic , Animals , Base Sequence , Chromosome Mapping/methods , DNA/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Molecular Sequence Data , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , RNA, Ribosomal/metabolism , Ribosomes/metabolism , Sequence Analysis, DNA
19.
Ecotoxicol Environ Saf ; 80: 76-83, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22445502

ABSTRACT

Raptors are exposed to biomagnifying and toxic organohalogenated compounds (OHCs) such as organochlorines, brominated flame retardants and perfluorinated compounds. To investigate how OHC exposure may affect biochemical pathways we collected blood plasma from Norwegian northern goshawk (n=56), golden eagle (n=12) and white-tailed eagle (n=36) nestlings during three consecutive breeding seasons. We found that blood plasma concentrations of calcium, sodium, creatinine, cholesterol, albumin, total protein, urea, inorganic phosphate, protein:creatinine, urea:creatinine and uric acid:creatinine ratios and liver enzymes ALKP and ALAT were positively correlated to PCBs, chlordanes, p,p'-DDE, HCB, PFCs and/or PBDEs. Total bilirubin and glucose were negatively correlated to PCBs while magnesium and potassium were negatively correlated to HCB and p,p'-DDE. In addition, protein:creatinine and ALAT were also negatively correlated to PCBs and PFCs, respectively. The most significant relationships were found for the highly contaminated northern goshawks and white-tailed eagles. The statistical relationships between OHCs and BCCPs indicate that biochemical pathways could be influenced while it is uncertain if such changes have any health effects. The OHC concentrations were below concentrations causing reproductive toxicity in adults of other raptor species but similar to those of concern for endocrine disruption of thyroid hormones in e.g., bald eagles.


Subject(s)
Eagles/blood , Environmental Exposure/analysis , Environmental Pollutants/blood , Hydrocarbons, Chlorinated/blood , Animals , Biomarkers/blood , Creatinine/blood , Dichlorodiphenyl Dichloroethylene/blood , Dichlorodiphenyl Dichloroethylene/standards , Dichlorodiphenyl Dichloroethylene/toxicity , Environmental Exposure/standards , Environmental Exposure/statistics & numerical data , Environmental Pollutants/standards , Environmental Pollutants/toxicity , Flame Retardants/metabolism , Flame Retardants/standards , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/blood , Halogenated Diphenyl Ethers/standards , Halogenated Diphenyl Ethers/toxicity , Hydrocarbons, Chlorinated/standards , Hydrocarbons, Chlorinated/toxicity , Norway , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/standards , Polychlorinated Biphenyls/toxicity , Reproduction/drug effects , Thyroid Hormones/blood
20.
Nature ; 477(7363): 207-10, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21832995

ABSTRACT

Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.


Subject(s)
Gadus morhua/genetics , Gadus morhua/immunology , Genome/genetics , Immune System/immunology , Immunity/genetics , Animals , Evolution, Molecular , Genomics , Hemoglobins/genetics , Immunity/immunology , Major Histocompatibility Complex/genetics , Major Histocompatibility Complex/immunology , Male , Polymorphism, Genetic/genetics , Synteny/genetics , Toll-Like Receptors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL