Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38891540

ABSTRACT

Globally, huge amounts of cotton and sunflower stalks are generated annually. These wastes are being underutilized since they are mostly burned in the fields. So, in this work, we proposed a three-step method consisting of acid pre-treatment, alkaline hydrolysis, and bleaching for the extraction of cellulose pulps. These pulps were characterized to assess their morpho-structural and thermal properties. The design of experiments and response surface methodology were used for the optimization of the acid pre-treatment in order to achieve maximum removal of non-cellulosic compounds and obtain pulps enriched in cellulose. For cotton stalks, optimal conditions were identified as a reaction time of 190 min, a reaction temperature of 96.2 °C, and an acid (nitric acid) concentration of 6.3%. For sunflower stalks, the optimized time, temperature, and acid concentration were 130 min, 73.8 °C, and 8.7%, respectively. The pulps obtained after bleaching contained more than 90% cellulose. However, special care must be taken during the process, especially in the acid pre-treatment, as it causes the solubilization of a great amount of material. The characterization revealed that the extraction process led to cellulose pulps with around 69-70% crystallinity and thermal stability in the range of 340-350 °C, ready to be used for their conversion into derivatives for industrial applications.

2.
Environ Res ; 248: 118243, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38266899

ABSTRACT

The present work describes a protocol of chemical activation, with acid catalyst, of olive endocarps to obtain acid insoluble lignin-rich materials with high capacities for the adsorption of furfural present in aqueous media. During biomass activation, factors such as acid concentration, reaction time and temperature, solid/liquid ratio and the presence of water extractives strongly affected both the surface characteristics of the treated bioadsorbents and their capacities for furfural retention (percentage increase close to 600% with respect to the crude biomass). Once a treated solid with good adsorbent properties was obtained, the optimal conditions for adsorption were found: stirring speed 80 rpm, temperature 303 K and adsorbent load 7.5 g solid/50 cm3. Kinetic study indicated the pseudo-second order model provided the best fit of the experimental data. At 303 K, the equilibrium adsorption capacities values ranged from 2.27 mg g-1 to 29.29 mg g-1, for initial furfural concentrations between 0.49 g dm-3 and 12.88 g dm-3. Freundlich model presented the best isotherm (R2 = 0.996 and SE = 4.7%) providing KF and n values of 0.115 (mg g-1) (mg dm-3)-n and 0.610, respectively. Since physical interactions predominate in the adsorption of furfural on chemically activated olive endocarps, the furfural removal process could have occurred reversibly on the heterogeneous surface of the bioadsorbents.


Subject(s)
Olea , Water Pollutants, Chemical , Thermodynamics , Lignin/chemistry , Furaldehyde , Adsorption , Water/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Solutions
3.
Polymers (Basel) ; 14(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36236154

ABSTRACT

The present work studies the use of olive pit (OP) as a reinforcement in the manufacture of composites based on a post-consumer recycled polypropylene (rPP). In this way, it is feasible to provide added value from olive pits, a by-product resulting from the olive industry operations, while promoting the circular economy and reducing the use of fossil-based polymers. For this purpose, suitable samples were manufactured using 25 wt% and 40 wt% of OP. Additionally, the effect of incorporating additives was studied: (a) a process control additive (PA), and (b) a coupling agent of maleic anhydride grafted polypropylene (MAPP). The results showed an improvement in Young's and flexural modulus with the OP addition. The incorporation of PA did not present any significant improvement in the properties of the materials, nevertheless it facilitated the biocomposite manufacturing process. As for the coupling agent, it significantly improved the mechanical properties, achieving the best results with the addition of the two types of additives and 40 wt% of OP. Moreover, the thermal properties were maintained, and there was an increase in crystallinity in all composites compared to rPP. According to the results of the fracture surface analysis, the coupling agent improves reinforcement-polymer matrix cohesion.

4.
Prep Biochem Biotechnol ; 52(6): 627-639, 2022.
Article in English | MEDLINE | ID: mdl-34694205

ABSTRACT

Debaryomyces hansenii has been employed to study, initially, the influence of the oxygen availability on D-xylose to xylitol fermentation, as this parameter is considered as one of the most critical variables for this bio alcohol accumulation. Apart from the air supplied in the fermentation process through the stirring vortex (0.0 v/v/min), additional aeration rates (0.1-2.0 v/v/min) effects were discussed. Furthermore, a change in the fermentative medium composition as well as a comparative analysis of D. hansenii behavior with respect to fermentation of D-glucose and D-xylose mixtures solutions, with the aim of producing both xylitol and ethanol bioproducts, were performed. For these purposes, specific growth rates, biomass productivities, specific substrate-uptake rates, overall biomass yields, specific xylitol formation rates and overall xylitol yields values have been calculated, applying a differential method to the kinetic data. Aeration influence was clearly evinced since a faster D-xylose metabolism, for aeration values close to 1.0 v/v/min, was noted. This yeast exhibited a sequential substrate consumption, firstly D-glucose and then D-xylose. The maximum xylitol yield (0.32 kg kg- 1) was obtained for 0.5 v/v/min airflow, remarking a significant reduction of this parameter for both above and below the quoted air supply value.


Subject(s)
Debaryomyces , Xylitol , Ethanol , Fermentation , Glucose , Xylose/metabolism
5.
Bioresour Technol ; 220: 239-245, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27579798

ABSTRACT

In order to produce bioethanol from olive tree pruning biomass, deacetylation was performed employing sodium hydroxide. Optimal conditions were determined using experimental design techniques. The highest acetic acid removal (3.8g/dm(3)), obtained by response surface methodology, was at optimum pretreatment conditions of temperature 60°C, 0.8% NaOH and residence time 60min. After oxalic acid hydrolysis of pretreated biomass, the hydrolysates were directly used for ethanol production without further detoxification process. Ethanol yields ranged from 0.19 to 0.45g/g, reaching the maximum yield value when pretreatment was carried out at 130°C with 100mM oxalic acid, involving a combined severity factor (CSF) of 1.05. The highest ethanol concentration obtained from pretreated biomass was 6.2g/dm(3) at 150°C, using 75mM of oxalic acid (CSF=1.53).


Subject(s)
Agriculture/methods , Biofuels , Biotechnology/methods , Ethanol/metabolism , Olea/chemistry , Acetic Acid/chemistry , Acetic Acid/isolation & purification , Acetylation , Biomass , Ethanol/chemistry , Fermentation , Hydrolysis , Oxalic Acid/chemistry , Pichia/metabolism , Plant Shoots/chemistry , Sodium Hydroxide , Temperature
6.
Bioresour Technol ; 190: 1-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25916261

ABSTRACT

Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively.


Subject(s)
Candida tropicalis/metabolism , Ethanol/metabolism , Hydrochloric Acid/chemistry , Olea/chemistry , Olea/microbiology , Xylitol/metabolism , Biodegradation, Environmental , Ethanol/chemistry , Ethanol/isolation & purification , Fermentation , Hydrolysis , Industrial Waste/prevention & control , Plant Components, Aerial/chemistry , Plant Components, Aerial/microbiology , Pressure , Refuse Disposal/methods , Steam , Xylitol/chemistry , Xylitol/isolation & purification
7.
Bioresour Technol ; 149: 149-54, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24096282

ABSTRACT

Statistical modeling and optimization of dilute sulfuric acid hydrolysis of olive tree pruning biomass has been performed using response surface methodology. Central composite rotatable design was applied to assess the effect of acid concentration, reaction time and temperature on efficiency and selectivity of hemicellulosic monomeric carbohydrates to d-xylose. Second-order polynomial model was fitted to experimental data to find the optimum reaction conditions by multiple regression analysis. The monomeric d-xylose recovery 85% (as predicted by the model) was achieved under optimized hydrolysis conditions (1.27% acid concentration, 96.5°C and 138 min), confirming the high validity of the developed model. The content of d-glucose (8.3%) and monosaccharide degradation products (0.1% furfural and 0.04% 5-hydroxymethylfurfural) provided a high quality subtract, ready for subsequent biochemical conversion to value-added products.


Subject(s)
Biomass , Carbohydrates/biosynthesis , Models, Theoretical , Olea/chemistry , Sulfuric Acids/pharmacology , Trees/chemistry , Waste Products/analysis , Analysis of Variance , Glucose/metabolism , Hydrolysis/drug effects , Olea/drug effects , Trees/drug effects , Xylans/metabolism , Xylose/biosynthesis
8.
J Agric Food Chem ; 61(40): 9658-65, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-23992561

ABSTRACT

The aim of this work was to study the ability of Saccharomyces cerevisiae (baker's yeast) to metabolize a variety of aromatic compounds found in rice straw (RSHH) and olive tree pruning (OTHH) hemicellulosic hydrolysates, obtained by acid hydrolysis at different sugar and toxic compound concentrations. Initially, the hydrolysates were inoculated with S. cerevisiae (10 g L(-1)) and incubated at 30 °C under agitation at 200 rpm for 6 h. The results showed that this yeast was able to utilize phenolic and furan compounds in both hemicellulose hydrolysates. Next, the treated hydrolysates were inoculated with Pichia stipitis NRRL Y-7124 to evaluate the effect of biotransformation of aromatic compounds on ethanol production, and better fermentation results were obtained in this case compared to untreated ones. The untreated hemicellulose hydrolysates were not able to be fermented when they were incubated with Pichia stipitis. However, in RSHH treated hydrolysates, ethanol (Y(P/S)) and biomass (Y(X/S)) yields and volumetric ethanol productivity (Q(P)) were 0.17 g g(-1), 0.15 g g(-1) and 0.09 g L(-1) h(-1), respectively. The OTHH-treated hydrolysates showed less favorable results compared to RSHH, but the fermentation process was favored with regard to untreated hydrolysate. These results showed that the fermentation by P. stipitis in untreated hydrolysates was strongly inhibited by toxic compounds present in the media and that treatment with S. cerevisiae promoted a significant reduction in their toxicities.


Subject(s)
Ethanol/metabolism , Olea/chemistry , Oryza/chemistry , Pichia/metabolism , Polysaccharides/pharmacokinetics , Saccharomyces cerevisiae/metabolism , Biomass , Carbohydrates/chemistry , Culture Media/chemistry , Fermentation , Hydrolysis , Pichia/drug effects , Plant Stems/chemistry , Polysaccharides/chemistry
9.
Carbohydr Polym ; 93(2): 416-23, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23499077

ABSTRACT

Using the severity factor, it has been possible to study cellulose and hemicellulose fractional conversion, sugar yields change and oligosaccharides variation through olive tree pruning biomass pretreatments with acid or liquid hot water under pressure. The temperatures tested were in the range 180-230°C, operation time varying between 0 and 30min and acid concentration used did not exceed 0.05M. Complete hemicellulose solubilization in autohydrolysis was achieved using severity factors (logR0) close to 3.9 (most sugars are like oligomers), while if sulfuric acid 0.025M is employed, this parameter could be smaller (≥3.4). With these treatments, we have obtained cellulose conversions between 30 and 42% from liquid hot water experiments, 40-51% with sulfuric acid 0.025M and 42-57% when the acid concentration was 0.05M. The best results in terms of maximum yield in total sugars, d-glucose and d-xylose, with a low amount of acetic acid and hydroxymethylfurfural, was obtained at 200°C, 0min (what means that there is no time of temperature maintenance, only heating and cooling) and H2SO4 0.025M.


Subject(s)
Biofuels/analysis , Olea/chemistry , Polysaccharides/chemistry , Acetic Acid/analysis , Arabinose/chemistry , Ethanol/chemistry , Furaldehyde/analogs & derivatives , Furaldehyde/analysis , Glucose/chemistry , Hot Temperature , Hydrolysis , Lignin/chemistry , Water/chemistry , Xylitol/chemistry , Xylose/chemistry
10.
Bioprocess Biosyst Eng ; 31(6): 611-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18347818

ABSTRACT

The influence of the type and concentration of acid in the hydrolysis process and its effect on the subsequent fermentation by Pachysolen tannophilus (ATCC 32691) to produce ethanol and xylitol was studied. The hydrolysis experiments were performed using hydrochloric, sulphuric and trifluoroacetic acids in concentrations ranging from 0.1 to 1.0 N, a temperature of 90 degrees C, and a time of 240 min. The fermentation experiments were conducted on a laboratory scale in a batch-culture reactor at pH 4.5 and 30 degrees C. The hydrolysis with the highest acid concentration produced the complete solubilization of hemicellulose to monosaccharides. The highest values for the specific rate of ethanol production were registered in cultures hydrolyzed with trifluoroacetic acid, and values were found to decrease as the acid concentration increased. The highest values of overall ethanol yields (Y(E/s)G = 0.37 kg kg(-1)) were also found in the fermentation of the hydrolysates of trifluoroacetic acid.


Subject(s)
Acids/chemistry , Ascomycota/metabolism , Fermentation , Olea/enzymology , Biomass , Ethanol/chemistry , Hydrochloric Acid/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Monosaccharides/chemistry , Polysaccharides/chemistry , Temperature , Time Factors , Trifluoroacetic Acid/chemistry , Xylitol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL