Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39120376

ABSTRACT

In this work, the effect of multi-walled carbon nanotubes (MWCNT1, MWCNT2, and MWCNT3) with different outer diameters and specific surface areas on the mechanical and electrical properties of cement mortar have been investigated. Various concentrations of MWCNTs were used (0.05, 0.10, and 0.15%), the effective dispersion of which was carried out by an Ultrasonic machine (for 40 min with 160 W power and a 24 kHz frequency) using a surfactant. Composites have been processed with a biosilica content of 10% by weight of cement and without it. Compressive strength tests were carried out on days 7 and 28 of curing. The 7-day compressive strength of samples prepared without biosilica increased compared to the result of the control sample (6.4% for MWCNT1, 7.4% for MWCNT2, and 10.8% for MWCNT3), as did those using biosilica (6.7% in the case of MWCNT1, 29.2% for MWCNT2, and 2.1% for MWCNT3). Compressive strength tests of 28-day specimens yielded the following results: 21.7% for MWCNT1, 3.8% for MWCNT2, and 4.2% for MWCNT3 in the absence of biosilica and 8.5%, 12.6%, and 6.3% with biosilica, respectively. The maximum increase in compressive strength was observed in the composites treated with a 0.1% MWCNT concentration, while in the case of 0.05 and 0.15% concentrations, the compressive strengths were relatively low. The MWCNT-reinforced cement matrix obtained electrical properties due to the high electrical conductivity of these particles. The effect of MWCNT concentrations of 0.05, 0.10, and 0.15 wt% on the electrical properties of cement mortar, especially the bulk electrical resistivity and piezoresistive characteristics of cement mortar, was studied in this work. At a concentration of 0.05%, the lowest value of resistivity was obtained, and then it started to increase. The obtained results show that all investigated specimens have piezoresistive properties and that the measurements led to a deviation in fractional change in resistivity.

2.
Sci Rep ; 14(1): 5870, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467657

ABSTRACT

The nucleocapsid (N) protein of SARS-CoV-2 is known to participate in various host cellular processes, including interferon inhibition, RNA interference, apoptosis, and regulation of virus life cycles. Additionally, it has potential as a diagnostic antigen and/or immunogen. Our research focuses on examining structural changes caused by mutations in the N protein. We have modeled the complete tertiary structure of native and mutated forms of the N protein using Alphafold2. Notably, the N protein contains 3 disordered regions. The focus was on investigating the impact of mutations on the stability of the protein's dimeric structure based on binding free energy calculations (MM-PB/GB-SA) and RMSD fluctuations after MD simulations. The results demonstrated that 28 mutations out of 37 selected mutations analyzed, compared with wild-type N protein, resulted in a stable dimeric structure, while 9 mutations led to destabilization. Our results are important to understand the tertiary structure of the N protein dimer of SARS-CoV-2 and the effect of mutations on it, their behavior in the host cell, as well as for the research of other viruses belonging to the same genus additionally, to anticipate potential strategies for addressing this viral illness․.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid/genetics , Nucleocapsid/metabolism , Mutation
3.
Materials (Basel) ; 16(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37629807

ABSTRACT

In this work, the effect of biosilica concentration and two different mixing methods with Portland cement on the compressive strength of cement-based mortars were investigated. The following values of the biosilica concentration of cement weight were investigated։ 2.5, 5, 7.5, and 10 wt.%. The mortar was prepared using the following two biosilica mixing methods: First, biosilica was mixed with cement and appropriate samples were prepared. For the other mixing method, samples were prepared by dissolving biosilica in water using a magnetic stirrer. Compressive tests were carried out on an automatic compression machine with a loading rate of 2.4 kN/s at the age of 7 and 28 days. It is shown that, for all cases, the compressive strength has the maximum value of 10% biosilica concentration. In particular, in the case of the first mixing method, the compressive strength of the specimen over 7 days of curing increased by 30.5%, and by 36.5% for a curing period of 28 days. In the case of the second mixing method, the compressive strength of the specimen over 7 days of curing increased by 23.4%, and by 47.3% for a curing period of 28 days. Additionally, using the first and second mixing methods, the water absorption parameters were reduced by 22% and 34%, respectively. Finally, it is worth noting that the obtained results were intend to provide valuable insights into optimizing biosilica incorporation in cement mortar. With the aim of contributing to the advancement of construction materials, this research delves into the intriguing application of biosilica in cement mortar, emphasizing the significant impact of mixing techniques on the resultant compressive strength.

4.
Viruses ; 14(5)2022 05 17.
Article in English | MEDLINE | ID: mdl-35632815

ABSTRACT

The sequencing of SARS-CoV-2 provides essential information on viral evolution, transmission, and epidemiology. In this paper, we performed the whole-genome sequencing of SARS-CoV-2 using nanopore and Illumina sequencing to describe the circulation of the virus lineages in Armenia. The analysis of 145 full genomes identified six clades (19A, 20A, 20B, 20I, 21J, and 21K) and considerable intra-clade PANGO lineage diversity. Phylodynamic and transmission analysis allowed to attribute specific clades as well as infer their importation routes. Thus, the first two waves of positive case increase were caused by the 20B clade, the third peak caused by the 20I (Alpha), while the last two peaks were caused by the 21J (Delta) and 21K (Omicron) variants. The functional analyses of mutations in sequences largely affected epitopes associated with protective HLA loci and did not cause the loss of the signal in PCR tests targeting ORF1ab and N genes as confirmed by RT-PCR. We also compared the performance of nanopore and Illumina short-read sequencing and showed the utility of nanopore sequencing as an efficient and affordable alternative for large-scale molecular epidemiology research. Thus, our paper describes new data on the genomic diversity of SARS-CoV-2 variants in Armenia in the global context of the virus molecular genomic surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Armenia/epidemiology , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing , Humans , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL