Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
J Pediatr ; 274: 114177, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945442

ABSTRACT

OBJECTIVE: To demonstrate a high-yield molecular diagnostic workflow for lateralized overgrowth (LO), a congenital condition with abnormal enlargement of body parts, and to classify it by molecular genetics. STUDY DESIGN: We categorized 186 retrospective cases of LO diagnosed between 2003 and 2023 into suspected Beckwith-Wiedemann spectrum, PIK3CA-related overgrowth spectrum (PROS), vascular overgrowth, or isolated LO, based on initial clinical assessments, to determine the appropriate first-tier molecular tests and tissue for analysis. Patients underwent testing for 11p15 epigenetic abnormalities or somatic variants in genes related to PI3K/AKT/mTOR, vascular proliferation, and RAS-MAPK cascades using blood or skin DNA. For cases with negative initial tests, a sequential cascade molecular approach was employed to improve diagnostic yield. RESULTS: This approach led to a molecular diagnosis in 54% of cases, 89% of cases consistent with initial clinical suspicions, and 11% reclassified. Beckwith-Wiedemann spectrum was the most common cause, with 43% of cases exhibiting 11p15 abnormalities. PIK3CA-related overgrowth spectrum had the highest confirmation rate, with 74% of clinically diagnosed patients showing a PIK3CA variant. Vascular overgrowth demonstrated significant clinical overlap with other syndromes. A molecular diagnosis of isolated LO proved challenging, with only 21% of cases classifiable into a specific condition. CONCLUSIONS: LO is underdiagnosed from a molecular viewpoint and to date has had no diagnostic guidelines, which is crucial for addressing potential cancer predisposition, enabling precision medicine treatments, and guiding management. This study sheds light on the molecular etiology of LO, highlighting the importance of a tailored diagnostic approach and of selecting appropriate testing to achieve the highest diagnostic yield.

2.
Eur J Hum Genet ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824261

ABSTRACT

Pathogenic, largely truncating variants in the ETS2 repressor factor (ERF) gene, encoding a transcriptional regulator negatively controlling RAS-MAPK signaling, have been associated with syndromic craniosynostosis involving various cranial sutures and Chitayat syndrome, an ultrarare condition with respiratory distress, skeletal anomalies, and facial dysmorphism. Recently, a single patient with craniosynostosis and a phenotype resembling Noonan syndrome (NS), the most common disorder among the RASopathies, was reported to carry a de novo loss-of-function variant in ERF. Here, we clinically profile 26 individuals from 15 unrelated families carrying different germline heterozygous variants in ERF and showing a phenotype reminiscent of NS. The majority of subjects presented with a variable degree of global developmental and/or language delay. Their shared facial features included absolute/relative macrocephaly, high forehead, hypertelorism, palpebral ptosis, wide nasal bridge, and low-set/posteriorly angulated ears. Stature was below the 3rd centile in two-third of the individuals, while no subject showed typical NS cardiac involvement. Notably, craniosynostosis was documented only in three unrelated individuals, while a dolichocephalic aspect of the skull in absence of any other evidence supporting a premature closing of sutures was observed in other 10 subjects. Unilateral Wilms tumor was diagnosed in one individual. Most cases were familial, indicating an overall low impact on fitness. Variants were nonsense and frameshift changes, supporting ERF haploinsufficiency. These findings provide evidence that heterozygous loss-of-function variants in ERF cause a "RASopathy" resembling NS with or without craniosynostosis, and allow a first dissection of the molecular circuits contributing to MAPK signaling pleiotropy.

3.
Eur J Hum Genet ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824260

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is the major contributor to morbidity and mortality in Noonan syndrome (NS). Gain-of-function variants in RAF1 are associated with high prevalence of HCM. Among these, NM_002880.4:c.770C > T, NP_002871.1:p.(Ser257Leu) accounts for approximately half of cases and has been reported as associated with a particularly severe outcome. Nevertheless, comprehensive studies on cases harboring this variant are missing. To precisely define the phenotype associated to the RAF1:c.770C > T, variant, an observational retrospective analysis on patients carrying the c.770C > T variant was conducted merging 17 unpublished patients and literature-derived ones. Data regarding prenatal findings, clinical features and cardiac phenotypes were collected to provide an exhaustive description of the associated phenotype. Clinical information was collected in 107 patients. Among them, 92% had HCM, mostly diagnosed within the first year of life. Thirty percent of patients were preterm and 47% of the newborns was admitted in a neonatal intensive care unit, mainly due to respiratory complications of HCM and/or pulmonary arterial hypertension. Mortality rate was 13%, mainly secondary to HCM-related complications (62%) at the average age of 7.5 months. Short stature had a prevalence of 91%, while seizures and ID of 6% and 12%, respectively. Two cases out of 75 (3%) developed neoplasms. In conclusion, patients with the RAF1:c.770C > T pathogenic variant show a particularly severe phenotype characterized by rapidly progressive neonatal HCM and high mortality rate suggesting the necessity of careful monitoring and early intervention to prevent or slow down the progression of HCM.

4.
Life (Basel) ; 14(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38929714

ABSTRACT

The RASopathies are a group of syndromes caused by genetic variants that affect the RAS-MAPK signaling pathway, which is essential for cell response to diverse stimuli. These variants functionally converge towards the overactivation of the pathway, leading to various constitutional and mosaic conditions. These syndromes show overlapping though distinct clinical presentations and share congenital heart defects, hypertrophic cardiomyopathy (HCM), and lymphatic dysplasia as major clinical features, with highly variable prevalence and severity. Available treatments have mainly been directed to target the symptoms. However, repurposing MEK inhibitors (MEKis), which were originally developed for cancer treatment, to target evolutive aspects occurring in these disorders is a promising option. Animal models have shown encouraging results in treating various RASopathy manifestations, including HCM and lymphatic abnormalities. Clinical reports have also provided first evidence supporting the effectiveness of MEKi, especially trametinib, in treating life-threatening conditions associated with these disorders. Nevertheless, despite notable improvements, there are adverse events that occur, necessitating careful monitoring. Moreover, there is evidence indicating that multiple pathways can contribute to these disorders, indicating a current need to more accurate understand of the underlying mechanism of the disease to apply an effective targeted therapy. In conclusion, while MEKi holds promise in managing life-threatening complications of RASopathies, dedicated clinical trials are required to establish standardized treatment protocols tailored to take into account the individual needs of each patient and favor a personalized treatment.

5.
HGG Adv ; 5(3): 100309, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38751117

ABSTRACT

Analysis of genomic DNA methylation by generating epigenetic signature profiles (episignatures) is increasingly being implemented in genetic diagnosis. Here we report our experience using episignature analysis to resolve both uncomplicated and complex cases of neurodevelopmental disorders (NDDs). We analyzed 97 NDDs divided into (1) a validation cohort of 59 patients with likely pathogenic/pathogenic variants characterized by a known episignature and (2) a test cohort of 38 patients harboring variants of unknown significance or unidentified variants. The expected episignature was obtained in most cases with likely pathogenic/pathogenic variants (53/59 [90%]), a revealing exception being the overlapping profile of two SMARCB1 pathogenic variants with ARID1A/B:c.6200, confirmed by the overlapping clinical features. In the test cohort, five cases showed the expected episignature, including (1) novel pathogenic variants in ARID1B and BRWD3; (2) a deletion in ATRX causing MRXFH1 X-linked mental retardation; and (3) confirmed the clinical diagnosis of Cornelia de Lange (CdL) syndrome in mutation-negative CdL patients. Episignatures analysis of the in BAF complex components revealed novel functional protein interactions and common episignatures affecting homologous residues in highly conserved paralogous proteins (SMARCA2 M856V and SMARCA4 M866V). Finally, we also found sex-dependent episignatures in X-linked disorders. Implementation of episignature profiling is still in its early days, but with increasing utilization comes increasing awareness of the capacity of this methodology to help resolve the complex challenges of genetic diagnoses.


Subject(s)
DNA Methylation , Neurodevelopmental Disorders , Humans , DNA Methylation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Male , Female , Transcription Factors/genetics , Child , Epigenesis, Genetic , Child, Preschool , DNA-Binding Proteins/genetics , Mutation , Adolescent
6.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38787418

ABSTRACT

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Subject(s)
DNA Methylation , Intellectual Disability , Humans , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Male , Female , Haploinsufficiency/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Child
8.
Genet Med ; 26(3): 101041, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38054406

ABSTRACT

PURPOSE: The main objective of this study was to assess clinical features and genome-wide DNA methylation profiles in individuals affected by intellectual developmental disorder, autosomal dominant 21 (IDD21) syndrome, caused by variants in the CCCTC-binding factor (CTCF) gene. METHODS: DNA samples were extracted from peripheral blood of 16 individuals with clinical features and genetic findings consistent with IDD21. DNA methylation analysis was performed using the Illumina Infinium Methylation EPIC Bead Chip microarrays. The methylation levels were fitted in a multivariate linear regression model to identify the differentially methylated probes. A binary support vector machine classification model was constructed to differentiate IDD21 samples from controls. RESULTS: We identified a highly specific, reproducible, and sensitive episignature associated with CTCF variants. Six variants of uncertain significance were tested, of which 2 mapped to the IDD21 episignature and clustered alongside IDD21 cases in both heatmap and multidimensional scaling plots. Comparison of the genomic DNA methylation profile of IDD21 with that of 56 other neurodevelopmental disorders provided insights into the underlying molecular pathophysiology of this disorder. CONCLUSION: The robust and specific CTCF/IDD21 episignature expands the growing list of neurodevelopmental disorders with distinct DNA methylation profiles, which can be applied as supporting evidence in variant classification.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Developmental Disabilities/genetics , DNA Methylation/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Syndrome
9.
Genes (Basel) ; 14(12)2023 11 27.
Article in English | MEDLINE | ID: mdl-38136956

ABSTRACT

PIK3CA-related disorders encompass many rare and ultra-rare conditions caused by somatic genetic variants that hyperactivate the PI3K-AKT-mTOR signaling pathway, which is essential for cell cycle control. PIK3CA-related disorders include PIK3CA-related overgrowth spectrum (PROS), PIK3CA-related vascular malformations and PIK3CA-related non-vascular lesions. Phenotypes are extremely heterogeneous and overlapping. Therefore, diagnosis and management frequently involve various health specialists. Given the rarity of these disorders and the limited number of centers offering optimal care, the Scientific Committee of the Italian Macrodactyly and PROS Association has proposed a revision of the most recent recommendations for the diagnosis, molecular testing, clinical management, follow-up, and treatment strategies. These recommendations give insight on molecular diagnosis, eligible samples, preferable sequencing, and validation methods and management of negative results. The purpose of this paper is to promote collaboration between health care centers and clinicians with a joint shared approach. Finally, we suggest the direction of present and future research studies, including new systemic target therapies, which are currently under evaluation in several clinical trials, such as specific inhibitors that can be employed to downregulate the signaling pathway.


Subject(s)
Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/genetics , Consensus , Mutation , Class I Phosphatidylinositol 3-Kinases/genetics , Italy
10.
BMC Med Genomics ; 16(1): 303, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012624

ABSTRACT

BACKGROUND: In 2018, our center started a program to offer genetic diagnosis to patients with kidney and liver monogenic rare conditions, potentially eligible for organ transplantation. We exploited a clinical exome sequencing approach, followed by analyses of in silico gene panels tailored to clinical suspicions, obtaining detection rates in line with what reported in literature. However, a percentage of patients remains without a definitive genetic diagnosis. This work aims to evaluate the utility of NGS data re-analysis for those patients with an inconclusive or negative genetic test at the time of first analysis considering that (i) the advance of alignment and variant calling processes progressively improve the detection rate, limiting false positives and false negatives; (ii) gene panels are periodically updated and (iii) variant annotation may change over time. METHODS: 114 patients, recruited between 2018 and 2020, with an inconclusive or negative NGS report at the time of first analysis, were included in the study. Re-alignment and variant calling of previously generated sequencing raw data were performed using the GenomSys Variant Analyzer software. RESULTS: 21 previously not reported potentially causative variants were identified in 20 patients. In most cases (n = 19), causal variants were retrieved out of the re-classification from likely benign to variants of unknown significance (VUS). In one case, the variant was included because of inclusion in the analysis of a newly disease-associated gene, not present in the original gene panel, and in another one due to the improved data alignment process. Whenever possible, variants were validated with Sanger sequencing and family segregation studies. As of now, 16 out of 20 patients have been analyzed and variants confirmed in 8 patients. Specifically, in two pediatric patients, causative variants were de novo mutations while in the others, the variant was present also in other affected relatives. In the remaining patients, variants were present also in non-affected parents, raising questions on their re-classification. CONCLUSIONS: Overall, these data indicate that periodic and systematic re-analysis of negative or inconclusive NGS data reports can lead to new variant identification or reclassification in a small but significant proportion of cases, with benefits for patients' management.


Subject(s)
Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Child , Exome Sequencing , Software
11.
Cancers (Basel) ; 15(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37894306

ABSTRACT

Beckwith-Wiedemann syndrome (BWS) is a genetic imprinting disorder that most commonly presents as overgrowth, macroglossia, abdominal wall defects, lateralized overgrowth, and embryonal tumors [...].

12.
Genes Chromosomes Cancer ; 62(12): 703-709, 2023 12.
Article in English | MEDLINE | ID: mdl-37395289

ABSTRACT

Heterozygous germline or somatic variants in AKT3 gene can cause isolated malformations of cortical development (MCDs) such as focal cortical dysplasia, megalencephaly (MEG), Hemimegalencephaly (HME), dysplastic megalencephaly, and syndromic forms like megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, and megalencephaly-capillary malformation syndrome. This report describes a new case of HME and capillary malformation caused by a somatic AKT3 variant that differs from the common p.E17K variant described in literature. The patient's skin biopsy from the angiomatous region revealed an heterozygous likely pathogenic variant AKT3:c.241_243dup, p.(T81dup) that may affect the binding domain and downstream pathways. Compared to previously reported cases with a common E17K mosaic variant, the phenotype is milder and patients showed segmental overgrowth, an uncommon characteristic in AKT3 variant cases. These findings suggest that the severity of the disease may be influenced not only by the level of mosaicism but also by the type of variant. This report expands the phenotypic spectrum associated with AKT3 variants and highlights the importance of genomic analysis in patients with capillary malformation and MCDs.


Subject(s)
Megalencephaly , Vascular Malformations , Humans , Mutation , Megalencephaly/genetics , Megalencephaly/pathology , Vascular Malformations/genetics , Phenotype , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
13.
Eur J Hum Genet ; 31(11): 1333-1336, 2023 11.
Article in English | MEDLINE | ID: mdl-37365400

ABSTRACT

PIK3CA pathogenic variants are responsible for a group of overgrowth syndromes, collectively known as PIK3CA-Related Overgrowth Spectrum (PROS). These gain-of-function variants arise postzygotically, and, according to time of onset, kind of embryonal tissue affected and regional body extension, give rise to heterogeneous phenotypes. PROS rarity and heterogeneity hamper the correct estimation of its epidemiology. Our work represents the first attempt to define the prevalence of PROS according to the established diagnostic criteria and molecular analysis and based on solid demographic data. We assessed the prevalence in Piedmont Region (Italy), including in the study all participants diagnosed with PROS born there from 1998 to 2021. The search identified 37 cases of PROS born across the 25-year period, providing a prevalence of 1:22,313 live births. Molecular analysis was positive in 81.0% of participants. Taking into account the cases with a detected variant in PIK3CA (n = 30), prevalence of molecularly positive PROS was 1:27,519.


Subject(s)
Growth Disorders , Humans , Mutation , Growth Disorders/epidemiology , Growth Disorders/genetics , Growth Disorders/diagnosis , Phenotype , Class I Phosphatidylinositol 3-Kinases/genetics , Syndrome
14.
Am J Med Genet C Semin Med Genet ; 193(2): 116-127, 2023 06.
Article in English | MEDLINE | ID: mdl-37163416

ABSTRACT

Beckwith-Wiedemann syndrome (BWS) is an overgrowth and epigenetic disorder caused by changes on chromosome 11p15. The primary features requiring management in childhood include macroglossia, omphalocele, lateralized overgrowth, hyperinsulinism, and embryonal tumors. Management guidelines have not been developed for adults with BWS and there have been few studies to assess the clinical needs of these patients. Furthermore, there have been few studies on the psychosocial implications of BWS in children or adults. Here, we present a descriptive summary of data gathered from two separate adult BWS cohorts. The first, a patient-based survey cohort, includes self-reported health information and recollections about BWS experiences, while the second provides results of a medical record-based assessment from patients in an overgrowth registry. Results highlight the clinical features and medical issues affecting two large independent cohorts of adults with BWS while noting similarities. Open-ended questions asked of the survey cohort yielded themes to guide future qualitative studies. Finally, the study demonstrated the reliability of patient-reported data and the utility of international partnerships in this context.


Subject(s)
Beckwith-Wiedemann Syndrome , Macroglossia , Child , Humans , Adult , Beckwith-Wiedemann Syndrome/genetics , Reproducibility of Results , Macroglossia/genetics , DNA Methylation
15.
Eur J Hum Genet ; 31(11): 1228-1236, 2023 11.
Article in English | MEDLINE | ID: mdl-36879111

ABSTRACT

Despite major advances in genome technology and analysis, >50% of patients with a neurodevelopmental disorder (NDD) remain undiagnosed after extensive evaluation. A point in case is our clinically heterogeneous cohort of NDD patients that remained undiagnosed after FRAXA testing, chromosomal microarray analysis and trio exome sequencing (ES). In this study, we explored the frequency of non-random X chromosome inactivation (XCI) in the mothers of male patients and affected females, the rationale being that skewed XCI might be masking previously discarded genetic variants found on the X chromosome. A multiplex fluorescent PCR-based assay was used to analyse the pattern of XCI after digestion with HhaI methylation-sensitive restriction enzyme. In families with skewed XCI, we re-evaluated trio-based ES and identified pathogenic variants and a deletion on the X chromosome. Linkage analysis and RT-PCR were used to further study the inactive X chromosome allele, and Xdrop long-DNA technology was used to define chromosome deletion boundaries. We found skewed XCI (>90%) in 16/186 (8.6%) mothers of NDD males and in 12/90 (13.3%) NDD females, far beyond the expected rate of XCI in the normal population (3.6%, OR = 4.10; OR = 2.51). By re-analyzing ES and clinical data, we solved 7/28 cases (25%) with skewed XCI, identifying variants in KDM5C, PDZD4, PHF6, TAF1, OTUD5 and ZMYM3, and a deletion in ATRX. We conclude that XCI profiling is a simple assay that targets a subgroup of patients that can benefit from re-evaluation of X-linked variants, thus improving the diagnostic yield in NDD patients and identifying new X-linked disorders.


Subject(s)
Genes, X-Linked , X Chromosome Inactivation , Female , Humans , Male , Mothers , Alleles , Chromosomes , Chromosomes, Human, X/genetics , Neoplasm Proteins/genetics
16.
Genes (Basel) ; 14(3)2023 02 22.
Article in English | MEDLINE | ID: mdl-36980822

ABSTRACT

Pathogenic variants in RASA1 are typically associated with a clinical condition called "capillary malformation-arteriovenous malformation" (CM-AVM) syndrome, an autosomal dominant genetic disease characterized by a broad phenotypic variability, even within families. In CM-AVM syndrome, multifocal capillary and arteriovenous malformations are mainly localized in the central nervous system, spine and skin. Although CM-AVM syndrome has been widely described in the literature, only 21 cases with prenatal onset of clinical features have been reported thus far. Here, we report four pediatric cases of molecularly confirmed CM-AVM syndrome which manifested during the prenatal period. Polyhydramnios, non-immune hydrops fetalis and chylothorax are only a few possible aspects of this condition, but a correct interpretation of these prenatal signs is essential due to the possible fatal consequences of unrecognized encephalic and thoracoabdominal deep vascular malformations in newborns and in family members carrying the same RASA1 variant.


Subject(s)
Arteriovenous Malformations , Port-Wine Stain , Female , Humans , Infant, Newborn , Child , Pregnancy , Mutation , p120 GTPase Activating Protein/genetics , Port-Wine Stain/genetics , Port-Wine Stain/diagnosis , Port-Wine Stain/pathology , Arteriovenous Malformations/diagnostic imaging , Arteriovenous Malformations/genetics , GTPase-Activating Proteins/genetics
17.
Cancers (Basel) ; 15(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36765732

ABSTRACT

Different scoring systems for the clinical diagnosis of the Beckwith-Wiedemann spectrum (BWSp) have been developed over time, the most recent being the international consensus score. Here we try to validate and provide data on the performance metrics of these scoring systems of the 2018 international consensus and the previous ones, relating them to BWSp features, molecular tests, and the probability of cancer development in a cohort of 831 patients. The consensus scoring system had the best performance (sensitivity 0.85 and specificity 0.43). In our cohort, the diagnostic yield of tests on blood-extracted DNA was low in patients with a low consensus score (~20% with a score = 2), and the score did not correlate with cancer development. We observed hepatoblastoma (HB) in 4.3% of patients with UPD(11)pat and Wilms tumor in 1.9% of patients with isolated lateralized overgrowth (ILO). We validated the efficacy of the currently used consensus score for BWSp clinical diagnosis. Based on our observation, a first-tier analysis of tissue-extracted DNA in patients with <4 points may be considered. We discourage the use of the consensus score value as an indicator of the probability of cancer development. Moreover, we suggest considering cancer screening for negative patients with ILO (risk ~2%) and HB screening for patients with UPD(11)pat (risk ~4%).

18.
J Med Genet ; 60(2): 163-173, 2023 02.
Article in English | MEDLINE | ID: mdl-35256403

ABSTRACT

BACKGROUND: Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS: We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS: 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION: We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.


Subject(s)
Vascular Malformations , Humans , Mutation/genetics , Phenotype , Genotype , Class I Phosphatidylinositol 3-Kinases/genetics , Vascular Malformations/diagnosis , Vascular Malformations/genetics , p120 GTPase Activating Protein/genetics
19.
Am J Med Genet C Semin Med Genet ; 190(4): 520-529, 2022 12.
Article in English | MEDLINE | ID: mdl-36461154

ABSTRACT

Mosaic RASopathies are a heterogeneous group of diseases characterized by the presence at birth or early onset of congenital anomalies, cutaneous and vascular anomalies, segmental overgrowth, and increased cancer risk. They are caused by somatic pathogenic variants of the genes belonging the RAt Sarcoma Mitogen-activated protein kinase (RAS/MAPK) pathway causing its hyperactivation. Here, we review the clinical and molecular characteristics of this heterogeneous group of diseases, including the possibilities of molecular diagnosis and new therapeutic perspectives.


Subject(s)
Mitogen-Activated Protein Kinases , ras Proteins , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , ras Proteins/genetics
20.
Front Endocrinol (Lausanne) ; 13: 923448, 2022.
Article in English | MEDLINE | ID: mdl-36133316

ABSTRACT

Objectives: We designed a multicentre open prospective randomized trial to evaluate the risk-benefit profile of two different initial treatment schemes with levothyroxine (L-T4), 10-12.5 µg/kg/day vs 12.6-15 µg/kg/day, on growth and neurodevelopmental outcomes in children with congenital hypothyroidism (CH) detected by neonatal screening to identify the best range dose to achieve optimal neurocognitive development. Design patients and methods: Children detected by neonatal screening were randomly assigned to receive an initial L-T4 dose of 10-12.5 µg/kg/day (Low) or 12.6-15 µg/kg/day (High). All patients underwent periodical clinical examination with measurement of growth parameters and measurement of TSH and FT4. Neurocognitive development was evaluated at the age of 24 months using Griffiths Mental Development Scales (GMDS) and cognitive and behavioral assessment was performed at 48 months of age using Wechsler Preschool and Primary scale of Intelligence (WIPPSI-III). The study was registered with clinicaltrials.gov (NCT05371262). Results: Treatment schemes below or above 12.5 µg/kg/day were both associated with rapid normalization of TSH and thyroid hormone levels in most patients with no differences in the risk of over- and under-treatment episodes in the first months of life. Growth parameters were normal and comparable between the two groups. Developmental quotients at 24 months of age were normal in both groups (Low 100.6 ± 15.5 vs High 96.9 ± 16.6). Likewise, at 4 years of age IQ and subtest scores were comparable between patients from Low and High (Total IQ 104.2 ± 11.4 vs 101.0 ± 20.3, Verbal IQ 103.9 ± 11.5 vs 98.7 ± 15.1, Performance IQ 105.3 ± 10.4 vs 100.3 ± 19.8). 6/45 CH patients (13.3%) showed a total IQ below 85 (73.7 ± 5.9) regardless of age at diagnosis, L-T4 starting dose, time of FT4 and TSH normalization and episodes of over and undertreatment. Worse socioeconomic status and delayed bone age at diagnosis were the only predictors of an increased risk of having suboptimal IQ at 24 and IQ at 48 months. Conclusions: Our results indicate that initial treatment with L-T4, 10-12.5 µg/kg/day vs 12.6-15 µg/kg/day, are both associated with normal growth and neurodevelopmental outcomes in children with CH detected by neonatal screening. Further studies with a long-term follow-up on a larger number of patients are needed to confirm these results. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT05371262?term=NCT05371262&draw=2&rank=1 identifer NCT05371262.


Subject(s)
Congenital Hypothyroidism , Thyroxine , Child, Preschool , Congenital Hypothyroidism/drug therapy , Humans , Prospective Studies , Thyroid Hormones/therapeutic use , Thyrotropin , Thyroxine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL