Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 110: 129882, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38996937

ABSTRACT

We present new small-molecular probes targeting the human PD-L1 protein. The molecules were designed by incorporating a newly discovered N-methylmorpholine substituent into a known biphenyl-based structure. Four prototype derivatives of 4-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-carbonitrile (STD4), comprising a morpholine substituent fused with a biphenyl core at different orientations were first verified for their potential binding to PD-L1 using the molecular docking method. A more favorable 7-phenyl derivative of STD4 was then equipped with an amide bond, pyridine, and either a tris(hydroxymethyl)aminomethane or serinol tail leading to two final molecules. Among them, compound 1c showed activity in three bioassays, i.e., the homogenous time-resolved fluorescence (HTRF) assay, immune checkpoint blockade (ICB) assay, and T-cell activation (TCA) assay. Our work shows that morpholine can substitute for dioxane and becomes a promising component in PD-L1-targeting molecules. This finding unlocks new avenues for optimizing PD-L1-targeting compounds, presenting exciting prospects for future developments in this field.


Subject(s)
B7-H1 Antigen , Biphenyl Compounds , Morpholines , Programmed Cell Death 1 Receptor , Humans , Biphenyl Compounds/chemistry , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Structure-Activity Relationship , Morpholines/chemistry , Morpholines/pharmacology , Morpholines/chemical synthesis , Molecular Structure , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Molecular Docking Simulation , Dose-Response Relationship, Drug
2.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893521

ABSTRACT

The PD-1/PD-L1 complex is an immune checkpoint responsible for regulating the natural immune response, but also allows tumors to escape immune surveillance. Inhibition of the PD-1/PD-L1 axis positively contributes to the efficacy of cancer treatment. The only available therapeutics targeting PD-1/PD-L1 are monoclonal antibody-based drugs, which have several limitations. Therefore, small molecule compounds are emerging as an attractive alternative that can potentially overcome the drawbacks of mAb-based therapy. In this article, we present a novel class of small molecule compounds based on the terphenyl scaffold that bind to PD-L1. The general architecture of the presented structures is characterized by axial symmetry and consists of three elements: an m-terphenyl core, an additional aromatic ring, and a solubilizing agent. Using molecular docking, we designed a series of final compounds, which were subsequently synthesized and tested in HTRF assay and NMR binding assay to evaluate their activity. In addition, we performed an in-depth analysis of the mutual arrangement of the phenyl rings of the terphenyl core within the binding pocket of PD-L1 and found several correlations between the plane angle values and the affinity of the compounds towards the protein.


Subject(s)
B7-H1 Antigen , Molecular Docking Simulation , Programmed Cell Death 1 Receptor , Protein Binding , Terphenyl Compounds , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , B7-H1 Antigen/chemistry , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/chemistry , Humans , Terphenyl Compounds/chemistry , Terphenyl Compounds/pharmacology , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/pharmacology , Molecular Structure , Structure-Activity Relationship , Binding Sites
3.
ACS Med Chem Lett ; 15(1): 36-44, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38229762

ABSTRACT

Although heavily studied, the subject of anti-PD-L1 small-molecule inhibitors is still elusive. Here we present a systematic overview of the principles behind successful anti-PD-L1 small-molecule inhibitor design on the example of the m-terphenyl scaffold, with a particular focus on the neglected influence of the solubilizer tag on the overall affinity toward PD-L1. The inhibitor developed according to the proposed guidelines was characterized through its potency in blocking PD-1/PD-L1 complex formation in homogeneous time-resolved fluorescence and cell-based assays. The affinity is also explained based on the crystal structure of the inhibitor itself and its costructure with PD-L1 as well as a molecular modeling study. Our results structuralize the knowledge related to the strong pharmacophore feature of the m-terphenyl scaffold preferential geometry and the more complex role of the solubilizer tag in PD-L1 homodimer stabilization.

4.
ACS Chem Biol ; 17(9): 2655-2663, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36073782

ABSTRACT

Development of small molecules targeting the PD-L1/PD-1 interface is advancing both in industry and academia, but only a few have reached early-stage clinical trials. Here, we take a closer look at the general druggability of PD-L1 using in silico hot spot mapping and nuclear magnetic resonance (NMR)-based characterization. We found that the conformational elasticity of the PD-L1 surface strongly influences the formation of hot spots. We deconstructed several generations of known inhibitors into fragments and examined their binding properties using differential scanning fluorimetry (DSF) and protein-based nuclear magnetic resonance (NMR). These biophysical analyses showed that not all fragments bind to the PD-L1 ectodomain despite having the biphenyl scaffold. Although most of the binding fragments induced PD-L1 oligomerization, two compounds, TAH35 and TAH36, retain the monomeric state of proteins upon binding. Additionally, the presence of the entire ectodomain did not affect the binding of the hit compounds and dimerization of PD-L1. The data demonstrated here provide important information on the PD-L1 druggability and the structure-activity relationship of the biphenyl core moiety and therefore may aid in the design of novel inhibitors and focused fragment libraries for PD-L1.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , B7-H1 Antigen/metabolism , Biphenyl Compounds , Programmed Cell Death 1 Receptor/metabolism , Protein Binding , Small Molecule Libraries/chemistry
5.
Int J Mol Sci ; 22(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34769226

ABSTRACT

Targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) interaction has become an established strategy for cancer immunotherapy. Although hundreds of small-molecule, peptide, and peptidomimetic inhibitors have been proposed in recent years, only a limited number of drug candidates show good PD-1/PD-L1 blocking activity in cell-based assays. In this article, we compare representative molecules from different classes in terms of their PD-1/PD-L1 dissociation capacity measured by HTRF and in vitro bioactivity determined by the immune checkpoint blockade (ICB) co-culture assay. We point to recent discoveries that underscore important differences in the mechanisms of action of these molecules and also indicate one principal feature that needs to be considered, which is the eventual human PD-L1 specificity.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors , Peptidomimetics , Animals , B7-H1 Antigen/metabolism , CHO Cells , Cricetulus , Drug Evaluation , Humans , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/pharmacology , Jurkat Cells , Peptidomimetics/chemistry , Peptidomimetics/pharmacology
6.
J Med Chem ; 64(15): 11614-11636, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34313116

ABSTRACT

We describe a new class of potent PD-L1/PD-1 inhibitors based on a terphenyl scaffold that is derived from the rigidified biphenyl-inspired structure. Using in silico docking, we designed and then experimentally demonstrated the effectiveness of the terphenyl-based scaffolds in inhibiting PD-1/PD-L1 complex formation using various biophysical and biochemical techniques. We also present a high-resolution structure of the complex of PD-L1 with one of our most potent inhibitors to identify key PD-L1/inhibitor interactions at the molecular level. In addition, we show the efficacy of our most potent inhibitors in activating the antitumor response using primary human immune cells from healthy donors.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , B7-H1 Antigen/metabolism , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , CHO Cells , Cell Survival/drug effects , Cells, Cultured , Cricetulus , Dose-Response Relationship, Drug , Humans , Molecular Structure , Programmed Cell Death 1 Receptor/metabolism , Protein Binding/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
7.
Eur J Med Chem ; 182: 111588, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31421630

ABSTRACT

Intrinsically disordered proteins are an emerging class of proteins without a folded structure and currently disorder-based drug targeting remains a challenge. p53 is the principal regulator of cell division and growth whereas MDM2 consists its main negative regulator. The MDM2-p53 recognition is a dynamic and multistage process that amongst other, employs the dissociation of a transient α-helical N-terminal ''lid'' segment of MDM2 from the proximity of the p53-complementary interface. Several small molecule inhibitors have been reported to inhibit the formation of the p53-MDM2 complex with the vast majority mimicking the p53 residues Phe19, Trp23 and Leu26. Recently, we have described the transit from the 3-point to 4-point pharmacophore model stabilizing this intrinsically disordered N-terminus by increasing the binding affinity by a factor of 3. Therefore, we performed a thorough SAR analysis, including chiral separation of key compound which was evaluated by FP and 2D NMR. Finally, p53-specific anti-cancer activity towards p53-wild-type cancer cells was observed for several representative compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Intrinsically Disordered Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzylamines/chemical synthesis , Benzylamines/chemistry , Benzylamines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyanides/chemical synthesis , Cyanides/chemistry , Cyanides/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Formates/chemical synthesis , Formates/chemistry , Formates/pharmacology , Humans , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Molecular Structure , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Structure-Activity Relationship , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism
8.
Molecules ; 24(11)2019 May 30.
Article in English | MEDLINE | ID: mdl-31151293

ABSTRACT

Cancer immunotherapy based on antibodies targeting the immune checkpoint PD-1/PD-L1 pathway has seen unprecedented clinical responses and constitutes the new paradigm in cancer therapy. The antibody-based immunotherapies have several limitations such as high production cost of the antibodies or their long half-life. Small-molecule inhibitors of the PD-1/PD-L1 interaction have been highly anticipated as a promising alternative or complementary therapeutic to the monoclonal antibodies (mAbs). Currently, the field of developing anti-PD-1/PD-L1 small-molecule inhibitors is intensively explored. In this paper, we review anti-PD-1/PD-L1 small-molecule and peptide-based inhibitors and discuss recent structural and preclinical/clinical aspects of their development. Discovery of the therapeutics based on small-molecule inhibitors of the PD-1/PD-L1 interaction represents a promising but challenging perspective in cancer treatment.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/metabolism , Drug Development , Peptides/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Amino Acid Sequence , Animals , Antineoplastic Agents, Immunological/chemistry , Drug Development/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Peptides/chemistry , Protein Binding/drug effects , Quantitative Structure-Activity Relationship , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL