Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(4): e202211957, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36282111

ABSTRACT

Modified nucleotides impact all aspects of eukaryotic mRNAs and contribute to regulation of gene expression at the transcriptional and translational level. At the 5' cap, adenosine as first transcribed nucleotide is often N6 -methyl-2'-O-methyl adenosine (m6 Am ). This modification is tissue dependent and reversible, pointing to a regulatory function. CAPAM was recently identified as methyltransferase responsible for m6 Am formation, however, the direct assignment of its target transcripts proves difficult. Antibodies do not discriminate between internal N6 -methyl adenosine (m6 A) and m6 Am . Here we present CAPturAM, an antibody-free chemical biology approach for direct enrichment and probing of physiological CAPAM-targets. We harness CAPAM's cosubstrate promiscuity to install propargyl groups on its targets. Subsequent functionalization with an affinity handle allows for their enrichment. Using wildtype and CAPAM-/- cells, we successfully applied CAPturAM to confirm or disprove CAPAM-targets, facilitating the verification and identification of CAPAM targets.


Subject(s)
Adenosine , Methyltransferases , Methylation , RNA, Messenger/metabolism , Methyltransferases/metabolism , Adenosine/metabolism , Nucleotides/metabolism
2.
Methods ; 205: 73-82, 2022 09.
Article in English | MEDLINE | ID: mdl-35764247

ABSTRACT

Post-transcriptional modifications play an important role in several processes, including translation, splicing, and RNA degradation in eukaryotic cells. To investigate the function of specific modifications it is of high interest to develop tools for sequence-specific RNA-targeting. This work focuses on two abundant modifications of eukaryotic mRNA, namely methylation of the guanine-N7 position of the 5'-cap and internal N6-methyladenosine (m6A). We describe the sequence-specific targeting of model RNA transcripts via RNA-binding proteins, such as nuclease-deficient RNA-targeting Cas9 (RCas9) and the Pumilio homology domain (PumHD) fused to two different effector enzymes, the dioxygenase FTO and the guanine-N7 methyltransferase Ecm1. With this tool, we were able to install and remove the methylation at the respective positions with high specificity.


Subject(s)
Adenosine , RNA , Adenosine/metabolism , Guanine , Methylation , Methyltransferases/chemistry , RNA/genetics , RNA/metabolism
3.
Methods ; 203: 196-206, 2022 07.
Article in English | MEDLINE | ID: mdl-34058305

ABSTRACT

Enzymatic modification of the 5'-cap is a versatile approach to modulate the properties of mRNAs. Transfer of methyl groups from S-adenosyl-l-methionine (AdoMet) or functional moieties from non-natural analogs by methyltransferases (MTases) allows for site-specific modifications at the cap. These modifications have been used to tune translation or control it in a temporal manner and even influence immunogenicity of mRNA. For quantification of the MTase-mediated cap modification, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) provides the required sensitivity and accuracy. Here, we describe the complete workflow starting from in vitro transcription to produce mRNAs, via their enzymatic modification at the cap with natural or non-natural moieties to the quantification of these cap-modifications by LC-QqQ-MS.


Subject(s)
Methyltransferases , Tandem Mass Spectrometry , Chromatography, Liquid , Methionine/chemistry , Methyltransferases/chemistry , Methyltransferases/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics
4.
Angew Chem Int Ed Engl ; 60(24): 13280-13286, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33751748

ABSTRACT

Eukaryotic mRNAs are emerging modalities for protein replacement therapy and vaccination. Their 5' cap is important for mRNA translation and immune response and can be naturally methylated at different positions by S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases (MTases). We report on the cosubstrate scope of the MTase CAPAM responsible for methylation at the N6 -position of adenosine start nucleotides using synthetic AdoMet analogs. The chemo-enzymatic propargylation enabled production of site-specifically modified reporter-mRNAs. These cap-propargylated mRNAs were efficiently translated and showed ≈3-fold increased immune response in human cells. The same effects were observed when the receptor binding domain (RBD) of SARS-CoV-2-a currently tested epitope for mRNA vaccination-was used. Site-specific chemo-enzymatic modification of eukaryotic mRNA may thus be a suitable strategy to modulate translation and immune response of mRNAs for future therapeutic applications.


Subject(s)
RNA Caps/immunology , RNA, Messenger/immunology , COVID-19/pathology , COVID-19/virology , Chromatography, High Pressure Liquid , Genes, Reporter , HEK293 Cells , Humans , Mass Spectrometry , Methylation , Methyltransferases/metabolism , Protein Biosynthesis , Protein Domains/genetics , Protein Domains/immunology , RNA Caps/analysis , RNA Caps/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/immunology , S-Adenosylmethionine/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
5.
Wiley Interdiscip Rev RNA ; 11(1): e1561, 2020 01.
Article in English | MEDLINE | ID: mdl-31392842

ABSTRACT

Labeling RNA is a recurring problem to make RNA compatible with state-of-the-art methodology and comes in many flavors. Considering only cellular applications, the spectrum still ranges from site-specific labeling of individual transcripts, for example, for live-cell imaging of mRNA trafficking, to metabolic labeling in combination with next generation sequencing to capture dynamic aspects of RNA metabolism on a transcriptome-wide scale. Combining the specificity of RNA-modifying enzymes with non-natural substrates has emerged as a valuable strategy to modify RNA site- or sequence-specifically with functional groups suitable for subsequent bioorthogonal reactions and thus label RNA with reporter moieties such as affinity or fluorescent tags. In this review article, we will cover chemo-enzymatic approaches (a) for in vitro labeling of RNA for application in cells, (b) for treatment of total RNA, and (c) for metabolic labeling of RNA. This article is categorized under: RNA Processing < RNA Editing and Modification RNA Methods < RNA Analyses in vitro and In Silico RNA Methods < RNA Analyses in Cells.


Subject(s)
Enzymes/metabolism , RNA/analysis , RNA/metabolism , Animals , Humans , RNA/genetics , Staining and Labeling
6.
Methods Mol Biol ; 2008: 131-146, 2019.
Article in English | MEDLINE | ID: mdl-31124094

ABSTRACT

Photo-cross-linking moieties have proven invaluable for elucidating interactions of biomolecules. While methods for site-specific incorporation of those moieties into proteins have been developed, comparable methods for nucleic acids are lacking. Utilizing the inherent specificity of enzymes, methyltransferases (MTase) exhibiting relaxed cosubstrate specificity in combination with synthetic analogs of S-adenosyl-L-methionine (AdoMet) allow for the precise installation of reporter molecules or affinity tags in various biomolecules. In this chapter, we describe AdoMet analogs with photo-cross-linking moieties that-in combination with an MTase-are ideal for site-specific installation. The workflow for chemo-enzymatic installation of photo-cross-linking moieties at the mRNA cap based on AdoMet analogs is given in detail.


Subject(s)
Cross-Linking Reagents/chemistry , Methyltransferases/chemistry , Photochemical Processes , RNA Caps/chemistry , RNA-Binding Proteins/chemistry , S-Adenosylmethionine/chemistry
7.
Chembiochem ; 20(13): 1693-1700, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30768827

ABSTRACT

Eukaryotic RNAs are heavily processed, including co- and post-transcriptional formation of various 5' caps. In small nuclear RNAs (snRNAs) or small nucleolar RNAs (snoRNAs), the canonical 7m G cap is hypermethylated at the N2 -position, whereas in higher eukaryotes and viruses 2'-O-methylation of the first transcribed nucleotide yields the cap1 structure. The function and potential dynamics of several RNA cap modifications have not been fully elucidated, which necessitates preparative access to these caps. However, the introduction of these modifications during chemical solid-phase synthesis is challenging and enzymatic production of defined short and uniform RNAs also faces difficulties. In this work, the chemical synthesis of RNA is combined with site-specific enzymatic methylation by using the methyltransferases human trimethylguanosine synthase 1 (hTgs1), trimethylguanosine synthase from Giardia lamblia (GlaTgs2), and cap methyltransferase 1 (CMTR1). It is shown that RNAs with di-and trimethylated caps, as well as RNAs with caps methylated at the 2'-O-position of the first transcribed nucleotide, can be conveniently prepared. These highly modified RNAs, with a defined and uniform sequence, are hard to access by in vitro transcription or chemical synthesis alone.


Subject(s)
Methyltransferases/chemistry , RNA Cap Analogs/chemical synthesis , Giardia lamblia/enzymology , Humans , Methylation , Multienzyme Complexes/chemistry , Nucleotidyltransferases/chemistry , Phosphoric Monoester Hydrolases/chemistry , Vaccinia/enzymology , Viral Proteins/chemistry
8.
Org Biomol Chem ; 15(2): 278-284, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27878160

ABSTRACT

Messenger RNA may not be very abundant in the cell but its central role in gene expression is indisputable. In addition to being the template for translation it can be subject for a variety of regulatory mechanisms affecting gene expression, ranging from simple structural changes to modifications and active transport. To elucidate and potentially control the underlying changes in vitro and in cells, site-specific modification and labeling strategies are required. In this perspective, we introduce chemo-enzymatic concepts for posttranscriptional modification focusing on eukaryotic mRNAs. We describe how eukaryotic mRNA can be enzymatically modified via its 5' cap. Directions towards chemo-enzymatic mRNA labeling and visualization inside cells are given, taking into account current developments in fluorophore design. Recent achievements and future perspectives will be highlighted in the framework of an honest discussion of existing challenges.


Subject(s)
Eukaryota/metabolism , Methyltransferases/metabolism , RNA, Messenger/metabolism , Humans , Molecular Structure
9.
Beilstein J Org Chem ; 13: 2819-2832, 2017.
Article in English | MEDLINE | ID: mdl-30018667

ABSTRACT

Eukaryotic mRNA with its 5'-cap is of central importance for the cell. Many studies involving mRNA require reliable preparation and modification of 5'-capped RNAs. Depending on the length of the desired capped RNA, chemical or enzymatic preparation - or a combination of both - can be advantageous. We review state-of-the art methods and give directions for choosing the appropriate approach. We also discuss the preparation and properties of mRNAs with non-natural caps providing novel features such as improved stability or enhanced translational efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL