Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38853957

ABSTRACT

Gene expression systems that transcend species barriers are needed for cross-species analysis of gene function. In particular, expression systems that can be utilized in both model and pathogenic bacteria underpin comparative functional approaches that inform conserved and variable features of bacterial physiology. Here, we develop replicative and integrative vectors alongside a novel, IPTG-inducible promoter that can be used in the model bacterium Escherichia coli K-12 as well as strains of the antibiotic-resistant pathogen, Acinetobacter baumannii. We generate modular vectors that transfer by conjugation at high efficiency and either replicate or integrate into the genome, depending on design. Embedded in these vectors, we also developed a synthetic, IPTG-inducible promoter, P abstBR , that induces to a high level, but is less leaky than the commonly used trc promoter. We show that P abstBR is titratable at both the population and single cell level, regardless of species, highlighting the utility of our expression systems for cross-species functional studies. Finally, as a proof of principle, we use our integrating vector to develop a reporter for the E. coli envelope stress σ factor, RpoE, and deploy the reporter in E. coli and A. baumannii, finding that A. baumannii does not recognize RpoE-dependent promoters unless RpoE is heterologously expressed. We envision that these vector and promoter tools will be valuable for the community of researchers that study fundamental biology of E. coli and A. baumannii.

2.
Fungal Genet Biol ; 169: 103839, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37709127

ABSTRACT

Phytopathogenic Alternaria species are renown for production of toxins that contribute to virulence on host plants. Typically, these toxins belong to well-known secondary metabolite chemical classes including polyketides, non-ribosomal peptides and terpenes. However, the purported host toxin brassicicolin A produced by A. brassicicola is an isocyanide, a chemical class whose genetics and encoding gene structure is largely unknown. The chemical structure of brassicicolin A shows it to have similarity to the recently characterized fumicicolins derived from the Aspergillus fumigatus isocyanide synthase CrmA. Examination of the A. brassicicola genome identified AbcrmA, a putative homolog with 64% identity to A. fumigatus CrmA. Deletion of AbcrmA resulted in loss of production of brassicicolin A. Contrary to reports that brassicicolin A is a host-specific toxin, the ΔAbcrmA mutants were equally virulent as the wildtype on Brassica hosts. However, in line with results of A. fumigatus CrmA generated metabolites, we find that brassicicolin A increased 360-fold under copper limited conditions. Also, like A. fumigatus CrmA derived metabolites, we find brassicicolin A to be a broad-spectrum antimicrobial. We speculate that CrmA-like isocyanide synthase products provide the producing fungi a fitness advantage in copper depleted environments.


Subject(s)
Alternaria , Anti-Infective Agents , Alternaria/genetics , Cyanides/metabolism , Copper/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Anti-Infective Agents/metabolism , Plant Diseases/microbiology
3.
Int J Antimicrob Agents ; 62(2): 106848, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37201798

ABSTRACT

Antimicrobial resistance (AMR) is one of the most pressing public health concerns; therefore, it is imperative to advance our understanding of the factors influencing AMR from Global and One Health perspectives. To address this, Aeromonas populations were identified using 16S rRNA gene libraries among human, agriculture, aquaculture, drinking water, surface water, and wastewater samples, supporting its use as indicator bacteria to study AMR. A systematic review and meta-analysis was then performed from Global and One Health perspectives, including data from 221 articles describing 15 891 isolates from 57 countries. The interconnectedness of different environments was evident as minimal differences were identified between sectors among 21 different antimicrobials. However, resistance to critically important antibiotics (aztreonam and cefepime) was significantly higher among wastewater populations compared with clinical isolates. Additionally, isolates from untreated wastewater typically exhibited increased AMR compared with those from treated wastewater. Furthermore, aquaculture was associated with increased AMR to ciprofloxacin and tetracycline compared with wild-caught seafood. Using the World Health Organization AWaRe classifications, countries with lower consumption of "Access" compared to "Watch" drugs from 2000 to 2015 demonstrated higher AMR levels. The current analysis revealed negative correlations between AMR and anthropogenic factors, such as environmental performance indices and socioeconomic standing. Environmental health and sanitation were two of the environmental factors most strongly correlated with AMR. The current analysis highlights the negative impacts of "Watch" drug overconsumption, anthropogenic activity, absence of wastewater infrastructure, and aquaculture on AMR, thus stressing the need for proper infrastructure and global regulations to combat this growing problem.


Subject(s)
Aeromonas , Anti-Infective Agents , One Health , Humans , Aeromonas/genetics , Wastewater , Global Health , RNA, Ribosomal, 16S , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology
4.
Nat Commun ; 13(1): 4828, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35973982

ABSTRACT

The genomes of many filamentous fungi, such as Aspergillus spp., include diverse biosynthetic gene clusters of unknown function. We previously showed that low copper levels upregulate a gene cluster that includes crmA, encoding a putative isocyanide synthase. Here we show, using untargeted comparative metabolomics, that CrmA generates a valine-derived isocyanide that contributes to two distinct biosynthetic pathways under copper-limiting conditions. Reaction of the isocyanide with an ergot alkaloid precursor results in carbon-carbon bond formation analogous to Strecker amino-acid synthesis, producing a group of alkaloids we term fumivalines. In addition, valine isocyanide contributes to biosynthesis of a family of acylated sugar alcohols, the fumicicolins, which are related to brassicicolin A, a known isocyanide from Alternaria brassicicola. CrmA homologs are found in a wide range of pathogenic and non-pathogenic fungi, some of which produce fumicicolin and fumivaline. Extracts from A. fumigatus wild type (but not crmA-deleted strains), grown under copper starvation, inhibit growth of diverse bacteria and fungi, and synthetic valine isocyanide shows antibacterial activity. CrmA thus contributes to two biosynthetic pathways downstream of trace-metal sensing.


Subject(s)
Anti-Infective Agents , Biosynthetic Pathways , Anti-Bacterial Agents/metabolism , Anti-Infective Agents/metabolism , Aspergillus fumigatus/metabolism , Carbon/metabolism , Copper/metabolism , Cyanides , Fungi/genetics , Multigene Family , Valine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...