Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(2)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35203663

ABSTRACT

We recently discovered a novel neuropeptide of 80 amino acid residues: neurosecretory protein GL (NPGL), in the hypothalamus of birds and rodents. NPGL is localized in the lateral posterior part of the arcuate nucleus (ArcLP), and it enhances feeding behavior and fat accumulation in mice. Various neurotransmitters, such as catecholamine, glutamate, and γ-aminobutyric acid (GABA), produced in the hypothalamus are also involved in energy metabolism. The colocalization of neurotransmitters and NPGL in neurons of the ArcLP leads to the elucidation of the regulatory mechanism of NPGL neurons. In this study, we performed double immunofluorescence staining to elucidate the relationship between NPGL and neurotransmitters in mice. The present study revealed that NPGL neurons did not co-express tyrosine hydroxylase as a marker of catecholaminergic neurons and vesicular glutamate transporter-2 as a marker of glutamatergic neurons. In contrast, NPGL neurons co-produced glutamate decarboxylase 67, a marker for GABAergic neurons. In addition, approximately 50% of NPGL neurons were identical to GABAergic neurons. These results suggest that some functions of NPGL neurons may be related to those of GABA. This study provides insights into the neural network of NPGL neurons that regulate energy homeostasis, including feeding behavior and fat accumulation.

2.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35216187

ABSTRACT

Sugar consumption can readily lead to obesity and metabolic diseases such as liver steatosis. We previously demonstrated that a novel hypothalamic neuropeptide, neurosecretory protein GL (NPGL), promotes fat accumulation due to the ingestion of sugar by rats. However, differences in lipogenic efficiency of sugar types by NPGL remain unclear. The present study aimed to elucidate the obesogenic effects of NPGL on mice fed different sugars (i.e., sucrose or fructose). We overexpressed the NPGL-precursor gene (Npgl) in the hypothalamus of mice fed a medium-fat/medium-sucrose diet (MFSD) or a medium-fat/medium-fructose diet (MFFD). Food intake and body mass were measured for 28 days. Body composition and mRNA expression of lipid metabolic factors were measured at the endpoint. Npgl overexpression potently increased body mass with fat accumulation in the white adipose tissue of mice fed MFFD, although it did not markedly affect food intake. In contrast, we observed profound fat deposition in the livers of mice fed MFFD but not MFSD. In the liver, the mRNA expression of glucose and lipid metabolic factors was affected in mice fed MFFD. Hence, NPGL induced liver steatosis in mice fed a fructose-rich diet.


Subject(s)
Fatty Liver/metabolism , Fructose/metabolism , Liver/metabolism , Nerve Tissue Proteins/metabolism , Adipose Tissue, White/metabolism , Animals , Body Composition/physiology , Diet, High-Fat/methods , Dietary Sucrose/metabolism , Energy Metabolism/physiology , Feeding Behavior/physiology , Glucose/metabolism , Hypothalamus/metabolism , Insulin/metabolism , Lipid Metabolism/physiology , Lipogenesis/physiology , Male , Mice , Mice, Inbred C57BL , Neuropeptides/metabolism , Obesity/metabolism
3.
Biosci Biotechnol Biochem ; 85(6): 1514-1520, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33851987

ABSTRACT

We recently identified a novel hypothalamic small protein, named neurosecretory protein GL (NPGL), which is involved in energy homeostasis in birds and mammals. However, whether the action of NPGL is influenced by nutritional composition remains unknown. Thus, we investigated the effect of chronic intracerebroventricular infusion of NPGL for 13 days on feeding behavior and body mass gain under a normal chow (NC) diet, high-fat diet, high-sucrose diet (HSD), and medium-fat/medium-sucrose diet (MFSD) in rats. NPGL stimulated food intake of NC and MFSD, especially during the light period. By contrast, NPGL decreased body mass gain under NC and increased total white adipose tissue mass in HSD- and MFSD-fed rats. These data suggest that the effects of NPGL on feeding behavior, body mass gain, and fat accumulation depend on nutrient type. Among them, sucrose in diets seems to contribute to fat accumulation elicited by NPGL.


Subject(s)
Adipose Tissue/drug effects , Adipose Tissue/metabolism , Diet , Eating/drug effects , Nerve Tissue Proteins/pharmacology , Nutrients/analysis , Animals , Dose-Response Relationship, Drug , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...