Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 601(7891): 69-73, 2022 01.
Article in English | MEDLINE | ID: mdl-34987213

ABSTRACT

The 660-kilometre seismic discontinuity is the boundary between the Earth's lower mantle and transition zone and is commonly interpreted as being due to the dissociation of ringwoodite to bridgmanite plus ferropericlase (post-spinel transition)1-3. A distinct feature of the 660-kilometre discontinuity is its depression to 750 kilometres beneath subduction zones4-10. However, in situ X-ray diffraction studies using multi-anvil techniques have demonstrated negative but gentle Clapeyron slopes (that is,  the ratio between pressure and temperature changes) of the post-spinel transition that do not allow a significant depression11-13. On the other hand, conventional high-pressure experiments face difficulties in accurate phase identification due to inevitable pressure changes during heating and the persistent presence of metastable phases1,3. Here we determine the post-spinel and akimotoite-bridgmanite transition boundaries by multi-anvil experiments using in situ X-ray diffraction, with the boundaries strictly based on the definition of phase equilibrium. The post-spinel boundary has almost no temperature dependence, whereas the akimotoite-bridgmanite transition has a very steep negative boundary slope at temperatures lower than ambient mantle geotherms. The large depressions of the 660-kilometre discontinuity in cold subduction zones are thus interpreted as the akimotoite-bridgmanite transition. The steep negative boundary of the akimotoite-bridgmanite transition will cause slab stagnation (a stalling of the slab's descent) due to significant upward buoyancy14,15.

2.
Sci Rep ; 9(1): 7420, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31092856

ABSTRACT

Several igneous activities occur on the surface of the Earth, including island arcs, mid-ocean ridges and hot spots. Based on geophysical observations, melting phenomena in the interior also occur at the asthenosphere's top and the upper mantle's bottom. Additionally, a seismological low-velocity anomaly was observed at the top of the lower mantle that may result from mantle melting due to dehydration decomposition of ringwoodite to bridgmanite and ferropericlase with a downward flow. However, the corresponding high-pressure experimental data are too poor to understand the melting phenomena under the lower mantle condition. Herein, we conducted hydrous peridotite melting experiments at pressures from 23.5 to 26 GPa and at temperatures from 1300 to 1600 °C for demonstrating the melt composition and the gravitational stability of magma at the top of the lower mantle. The melt had a SiO2-poor and MgO-rich composition, which is completely different than that of dry peridotite melting experiments. Compared with the seismological lower mantle, the experimental melt is gravitationally lighter; thus, a similar melt could be observed as seismological low-velocity zone at the lower mantle's top. The generated magma plays as a filter of down-welling mantle and can contribute to a formation of a silicate perovskitic lower mantle.

SELECTION OF CITATIONS
SEARCH DETAIL