Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Open ; 8(7)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31221627

ABSTRACT

The molecular triggers of sexual differentiation into gametocytes by blood stage Plasmodium falciparum, the most malignant human malaria parasites, are subject of much investigation for potential transmission-blocking strategies. The parasites are readily grown in vitro with culture media supplemented by the addition of human serum (10%) or by a commercially available substitute (0.5% AlbuMAX). We found better gametocytemia with serum than AlbuMAX, suggesting suboptimal concentrations of some components in the commercial product; consistent with this hypothesis, substantial concentration differences of multiple fatty acids were detected between serum- and AlbuMAX-supplemented media. Mass spectroscopy analysis distinguished the lipid profiles of gametocyte- and asexual stage-parasite membranes. Delivery of various combinations of unsaturated fatty-acid-containing phospholipids to AlbuMAX-supported gametocyte cultures improved gametocyte production to the levels achieved with human-serum-supplemented media. Maturing gametocytes readily incorporated externally supplied d5-labeled glycerol with fatty acids into unsaturated phospholipids. Phospholipids identified in this work thus may be taken up from extracellular sources or generated internally for important steps of gametocyte development. Further study of polyunsaturated fatty-acid metabolism and phospholipid profiles will improve understanding of gametocyte development and malaria parasite transmission.

2.
J Vet Med Sci ; 77(1): 53-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25298241

ABSTRACT

Bovine babesiosis is a livestock disease known to cause economic losses in endemic areas. The apicomplexan parasite Babesia bovis is able to invade and destroy the host's erythrocytes leading to the serious pathologies of the disease, such as anemia and hemoglobinuria. Understanding the egress mechanisms of this parasite is therefore a key step to develop new therapeutic strategies. In this study, the possible involvement of Ca(2+) in the egress of B. bovis merozoites from infected erythrocytes was investigated. Egress was artificially induced in vitro using calcium ionophore A23187 and thapsigargin to increase Ca(2+) concentration in the cytosol of the parasite cells. The increased intracellular Ca(2+) concentration following these treatments was confirmed using live cell Ca(2+) imaging with confocal laser scanning microscopy. Based on our findings, we suggest a Ca(2+) signalling pathway in the egress of B. bovis merozoites.


Subject(s)
Babesia bovis/physiology , Calcimycin/pharmacology , Calcium/metabolism , Cattle , Erythrocytes/parasitology , Merozoites/physiology , Animals , Calcium/chemistry , Calcium Ionophores/pharmacology , Erythrocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...