Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Environ Mol Mutagen ; 65(5): 179-186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860553

ABSTRACT

Annotating genomic sequence alterations is sometimes a difficult decision, particularly in missense variants with uncertain pathogenic significance and also in those presumed as germline pathogenic variants. We here suggest that mutation spectrum may also be useful for judging them. From the public databases, 982 BRCA1/1861 BRCA2 germline missense variants and 294 BRCA1/420 BRCA2 somatic missense variants were obtained. We then compared their mutation spectra, i.e., the frequencies of two transition- and four transversion-type mutations, in each category. Intriguingly, in BRCA1 variants, A:T to C:G transversion, which was relatively frequent in the germline, was extremely rare in somatic, particularly breast cancer, cells (p = .03). Conversely, A:T to T:A transversion was most infrequent in the germline, but not rare in somatic cells. Thus, BRCA1 variants with A:T to T:A transversion may be suspected as somatic, and those with A:T to C:G as being in the germline. These tendencies of mutation spectrum may also suggest the biological and chemical origins of the base alterations. On the other hand, unfortunately, variants of uncertain significance (VUS) were not distinguishable by mutation spectrum. Our findings warrant further and more detailed studies.


Subject(s)
Breast Neoplasms , Germ-Line Mutation , Ovarian Neoplasms , Humans , Female , Breast Neoplasms/genetics , Germ-Line Mutation/genetics , Ovarian Neoplasms/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Mutation, Missense , Genes, BRCA1 , Genes, BRCA2
2.
Genome Res ; 34(1): 47-56, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38290979

ABSTRACT

Oxidative stress-induced DNA damage and its repair systems are related to cancer etiology; however, the molecular basis triggering tumorigenesis is not well understood. Here, we aimed to explore the causal relationship between oxidative stress, somatic mutations in pre-tumor-initiated normal tissues, and tumor incidence in the small intestines of MUTYH-proficient and MUTYH-deficient mice. MUTYH is a base excision repair enzyme associated with human colorectal cancer. Mice were administered different concentrations of potassium bromate (KBrO3; an oxidizing agent)-containing water for 4 wk for mutagenesis studies or 16 wk for tumorigenesis studies. All Mutyh -/- mice treated with >0.1% KBrO3 developed multiple tumors, and the average tumor number increased dose dependently. Somatic mutation analysis of Mutyh -/-/rpsL transgenic mice revealed that G:C  > T:A transversion was the only mutation type correlated positively with KBrO3 dose and tumor incidence. These mutations preferentially occurred at 5'G in GG and GAA sequences in rpsL This characteristic mutation pattern was also observed in the genomic region of Mutyh -/- tumors using whole-exome sequencing. It closely corresponded to signature 18 and SBS36, typically caused by 8-oxo-guanine (8-oxoG). 8-oxoG-induced mutations were sequence context dependent, yielding a biased amino acid change leading to missense and stop-gain mutations. These mutations frequently occurred in critical amino acid codons of known cancer drivers, Apc or Ctnnb1, known for activating Wnt signal pathway. Our results indicate that oxidative stress contributes to increased tumor incidence by elevating the likelihood of gaining driver mutations by increasing 8-oxoG-mediated mutagenesis, particularly under MUTYH-deficient conditions.


Subject(s)
Guanine/analogs & derivatives , Neoplasms , Oxidative Stress , Humans , Mice , Animals , Oxidative Stress/genetics , Mutagenesis , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Mutation , Mice, Transgenic , Neoplasms/genetics , Amino Acids/genetics , DNA Repair
3.
Genes Environ ; 45(1): 3, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36639786

ABSTRACT

BACKGROUND: Non-thermal atmospheric pressure plasma technologies form the core of many scientific advances, including in the electronic, industrial, and biotechnological fields. The use of plasma as a cancer therapy has recently attracted significant attention due to its cancer cell killing activity. Plasma-activated Ringer's lactate solution (PAL) exhibits such activity. In addition to ROS, PAL contains active compounds or species that cause cancer cell death, but the potential mutagenic risks of PAL have not been studied. RESULTS: PAL has a low pH value and a high concentration of H2O2. H2O2 was removed from PAL using catalase and catalase-treated PAL with a pH of 5.9 retained a killing effect on HeLa cells whereas this effect was not observed if the PAL was adjusted to pH 7.2. Catalase-treated PAL at pH 5.9 had no significant effect on mutation frequency, the expression of γH2AX, or G2 arrest in HeLa cells. CONCLUSION: PAL contains one or more active compounds or species in addition to H2O2 that have a killing effect on HeLa cells. The compound(s) is active at lower pH conditions and apparently exhibits no genotoxicity. This study suggested that identification of the active compound(s) in PAL could lead to the development of novel anticancer drugs for future cancer therapy.

4.
Sci Rep ; 12(1): 14764, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042341

ABSTRACT

Chromosome translocation (TL) is an important mode of genomic changes underlying human tumorigenesis, the detailed mechanisms of which are, however, still not well understood. The two major modalities of DNA double strand break repair, i.e. homologous recombination (HR) and non-homologous end-joining (NHEJ), have been hypothesized. In a typical TL+ human neoplasm, Ewing sarcoma, which is frequently associated with t(11;22) TL encoding the EWS-FLI1 fusion gene, NHEJ has been regarded as a model to explain the disease-specific TL. Using comprehensive microarray approaches, we observed that expression of the HR genes, particularly of RAD51, is upregulated in TL+ Ewing sarcoma cell lines, WE-68 and SK-N-MC, as in the other TL+ tumor cell lines and one defective in DNA mismatch repair (MMR). The upregulated RAD51 expression indeed lead to frequent focus formation, which may suggest an activation of the HR pathway in these cells. Furthermore, sister chromatid exchange was frequently observed in the TL+ and MMR-defective cells. Intriguingly, ionizing irradiation revealed that the decrease of 53BP1 foci was significantly retarded in the Ewing sarcoma cell lines, suggesting that the NHEJ pathway may be less active in the cells. These observations may support an HR involvement, at least in part, to explain TL in Ewing sarcoma.


Subject(s)
Neuroectodermal Tumors, Primitive, Peripheral , Sarcoma, Ewing , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/pathology , Translocation, Genetic
5.
Cell Death Discov ; 8(1): 150, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365611

ABSTRACT

Oxidative stress plays a pivotal role in the differentiation and proliferation of cells and programmed cell death. However, studies on the role of oxidative stress in differentiation have mainly employed the detection of reactive oxygen species (ROS) during differentiation or generated by ROS inducers. Therefore, it is difficult to clarify the significance of endogenous ROS production in the differentiation of human cells. We developed a system to control the intracellular level of ROS in the initial stage of differentiation in human iPS cells. By introducing a specific substitution (I69E) into the SDHC protein, a component of the mitochondrial respiratory chain complex, the endogenous ROS level increased. This caused impaired endoderm differentiation of iPS cells, and this impairment was reversed by overproduction of mitochondrial-targeted catalase, an anti-oxidant enzyme. Expression of tumor-related FOXC1 transcription factor increased transiently as early as 4 h after ROS-overproduction in the initial stage of differentiation. Knockdown of FOXC1 markedly improved impaired endoderm differentiation, suggesting that endogenous ROS production in the early differentiation state suppresses endoderm differentiation via transient FOXC1 expression.

6.
DNA Repair (Amst) ; 108: 103216, 2021 12.
Article in English | MEDLINE | ID: mdl-34530183

ABSTRACT

In prokaryotes and yeasts, DNA polymerase proofreading (PPR) and DNA mismatch repair (MMR) cooperatively counteracts replication errors leading to repeat sequence destabilization (i.e. insertions/deletions of repeat units). However, PPR has not thus far been regarded as a mechanism stabilizing repeat sequences in higher eukaryotic cells. In a human cancer cell line, DLD-1, which carries mutations in both MSH6 and the Exo domain of POLD1, we previously observed that mononucleotide microsatellites were markedly destabilized whereas being stable in the simple MMR-defective backgrounds. In this study, we introduced the Exo domain mutation found in DLD-1 cells into MSH2-null HeLa cell clones, using CRISPR/Cas9 system. In the established Exo-/MMR-mutated HeLa clones, mononucleotide repeat sequences were remarkably destabilized as in DLD-1 cells. In contrast, dinucleotide microsatellites were readily destabilized in the parental MMR-deficient backgrounds, and the instability was not notably increased in the genome-edited HeLa clones. Here, we show an involvement of the Exo domain functions of DNA polymerase delta in mononucleotide repeat stabilization in human cells, which also suggests a possible role division between DNA polymerase and MMR in repeat maintenance in the human genome.


Subject(s)
DNA Mismatch Repair , DNA Polymerase III , Microsatellite Repeats , Cell Line, Tumor , DNA Polymerase III/genetics , HeLa Cells , Humans , Mutation , Protein Domains
7.
Sci Rep ; 10(1): 5388, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214146

ABSTRACT

Genomic destabilisation is associated with the induction of mutations, including those in cancer-driver genes, and subsequent clonal evolution of cells with abrogated defence systems. Such mutations are not induced when genome stability is maintained; however, the mechanisms involved in genome stability maintenance remain elusive. Here, resveratrol (and related polyphenols) is shown to enhance genome stability in mouse embryonic fibroblasts, ultimately protecting the cells against the induction of mutations in the ARF/p53 pathway. Replication stress-associated DNA double-strand breaks (DSBs) that accumulated with genomic destabilisation were effectively reduced by resveratrol treatment. In addition, resveratrol transiently stabilised the expression of histone H2AX, which is involved in DSB repair. Similar effects on the maintenance of genome stability were observed for related polyphenols. Accordingly, we propose that polyphenol consumption can contribute to the suppression of cancers that develop with genomic instability, as well as lifespan extension.


Subject(s)
Genomic Instability/drug effects , Resveratrol/pharmacology , Animals , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , Fibroblasts/metabolism , Mice , Mouse Embryonic Stem Cells/metabolism , Mutation , Polyphenols/metabolism , Polyphenols/pharmacology , Resveratrol/metabolism
8.
Nat Commun ; 10(1): 3925, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477700

ABSTRACT

Mismatch repair (MMR)-deficient cancers are characterized by microsatellite instability (MSI) and hypermutation. However, it remains unclear how MSI and hypermutation arise and contribute to cancer development. Here, we show that MSI and hypermutation are triggered by replication stress in an MMR-deficient background, enabling clonal expansion of cells harboring ARF/p53-module mutations and cells that are resistant to the anti-cancer drug camptothecin. While replication stress-associated DNA double-strand breaks (DSBs) caused chromosomal instability (CIN) in an MMR-proficient background, they induced MSI with concomitant suppression of CIN via a PARP-mediated repair pathway in an MMR-deficient background. This was associated with the induction of mutations, including cancer-driver mutations in the ARF/p53 module, via chromosomal deletions and base substitutions. Immortalization of MMR-deficient mouse embryonic fibroblasts (MEFs) in association with ARF/p53-module mutations was ~60-fold more efficient than that of wild-type MEFs. Thus, replication stress-triggered MSI and hypermutation efficiently lead to clonal expansion of cells with abrogated defense systems.


Subject(s)
Cell Proliferation/genetics , DNA Replication/genetics , Fibroblasts/metabolism , Microsatellite Instability , Mutation , Animals , Cells, Cultured , Chromosomal Instability , DNA Breaks, Double-Stranded , DNA Mismatch Repair/genetics , Embryo, Mammalian/cytology , Fibroblasts/cytology , HCT116 Cells , HeLa Cells , Humans , Mice, Knockout
10.
Exp Cell Res ; 377(1-2): 24-35, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30802454

ABSTRACT

Repeat destabilisation is variously associated with human disease. In neoplastic diseases, microsatellite instability (MSI) has been regarded as simply reflecting DNA mismatch repair (MMR) deficiency. However, several discrepancies have been pointed out. Firstly, the MSI+ phenotype is not uniform in human neoplasms. Established classification utilises the frequency of microsatellite changes, i.e. MSI-H (high) and -L (low), the former regarded as an authentic MMR-defective phenotype. In addition, we have observed the qualitatively distinct modes of MSI, i.e. Type A and Type B. One discrepancy we previously pointed out is that tumours occurring in MMR gene knockout mice exhibited not drastic microsatellite changes typical in MSI-H tumours (i.e. Type B mode) but minor and more subtle alterations (i.e. Type A mode). In the present study, MSH2 mutations reported in Lynch syndrome (LS) kindred have been introduced into HeLa cells using the CRISPR/Cas9 system. The established mutant clones clearly exhibited MMR-defective phenotypes with alkylating agent-tolerance and elevated mutation frequencies. Nevertheless, microsatellites were not markedly destabilised as in MSI-H tumours occurring in LS patients, and all the observed alterations were uniformly Type A, which confirms the results in mice. Our findings suggest added complexities to the molecular mechanisms underlying repeat destabilisation in human genome.


Subject(s)
CRISPR-Cas Systems , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Gene Editing , Genomics/methods , Microsatellite Instability , MutS Homolog 2 Protein/genetics , Mutation , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , HeLa Cells , Humans , Phenotype
11.
Shock ; 51(3): 364-371, 2019 03.
Article in English | MEDLINE | ID: mdl-29608549

ABSTRACT

Severe sepsis is critical to health and can result in acute renal failure (ARF). Tissue factor (TF) and thrombomodulin (TM) play key roles in vascular endothelial functions by helping maintain microcirculation in the kidney. Budding uninhibited by benzimidazole-1 (Bub1) plays a role in Akt and JNK signaling, which control TF and TM, respectively. We hypothesized that Bub1 could control vascular endothelial function in sepsis. The aim of this study was to determine the role of Bub1 in septic ARF. We used Mouse cecum ligation and puncture (CLP) using low Bub1 expressing (Bub1) and wild-type (Bub1) mice in vivo and lipopolysaccharide (LPS) stimulation of human aortic endothelial cell (HAEC) in vitro. Bub1 mice had a higher survival rate after CLP than Bub1. Bub1 mice had more severe ARF after CLP than Bub1 with blood biochemical and pathological analyses. TF expression in Bub1 mice and control HAEC (control) significantly increased in the septic model compared with Bub1 and Bub1 silenced HAEC (siBub1). TM expression in the control significantly decreased after LPS stimulation compared with siBub1. Akt and JNK phosphorylation of siBub1 were attenuated after LPS stimulation. Associations of Bub1 with Akt or JNK after LPS stimulation of HAEC were detected using immunoprecipitation, suggesting that Bub1 is involved in the phosphorylation of Akt and JNK after LPS stimulation. Bub1 insufficiency attenuates TF expression and reduces TM suppression by blocking Akt and JNK phosphorylation, respectively, thus leading to the prevention of ARF and death caused by sepsis.


Subject(s)
Acute Kidney Injury/metabolism , Endothelial Cells/metabolism , Protein Serine-Threonine Kinases/deficiency , Sepsis/metabolism , Thrombomodulin/biosynthesis , Thromboplastin/biosynthesis , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Endothelial Cells/pathology , Humans , Mice , Mice, Mutant Strains , Protein Serine-Threonine Kinases/metabolism , Sepsis/genetics , Sepsis/pathology , Thrombomodulin/genetics , Thromboplastin/genetics
12.
Heliyon ; 5(12): e03057, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32083205

ABSTRACT

Most cancers develop with one of two types of genomic instability, namely, chromosomal instability (CIN) or microsatellite instability (MSI). Both are induced by replication stress-associated DNA double-strand breaks (DSBs). The type of genomic instability that arises is dependent on the choice of DNA repair pathway. Specifically, MSI is induced via a PolQ-dependent repair pathway called microhomology-mediated end joining (MMEJ) in a mismatch repair (MMR)-deficient background. However, it is unclear how the MMR status determines the choice of DSB repair pathway. Here, we show that replication stress-associated DSBs initially targeted by the homologous recombination (HR) system were subsequently hijacked by PolQ-dependent MMEJ in MMR-deficient cells, but persisted as HR intermediates in MMR-proficient cells. PolQ interacting with MMR factors was effectively loaded onto damaged chromatin in an MMR-deficient background, in which merged MRE11/γH2AX foci also effectively formed. Thus, the choice of DNA repair pathway according to the MMR status determines whether CIN or MSI is induced.

13.
J Biosci Bioeng ; 125(5): 619-623, 2018 May.
Article in English | MEDLINE | ID: mdl-29361419

ABSTRACT

The introduction of a 5'-tailed duplex (5'-TD) fragment into cells corrects a base-substitution mutation in a target DNA. We previously reported that the gene correction efficiency was improved when a frameshift type of second mismatch was present ∼330 bases distant from the target position, between the target DNA and the 5'-TD fragment. In this study, the effects of the second mismatches on the gene correction were further examined. Base-base mismatches 332 bases distant from the target position slightly enhanced gene correction, but less efficiently than the previously studied frameshift mismatches. The gene correction efficiency was also increased when the distance between the target position and the second frameshift mismatch was changed to ∼270 bases. These results suggested that the introduction of an appropriate second frameshift mismatch into the 5'-TD fragment improves the gene correction efficiency.


Subject(s)
5' Flanking Region/genetics , Base Pair Mismatch/physiology , Escherichia coli Proteins/genetics , Genetic Therapy/methods , Mutagenesis, Site-Directed , Mutation, Missense , Ribosomal Proteins/genetics , Base Sequence , Frameshift Mutation , HeLa Cells , Humans , Mutagenesis, Site-Directed/methods , Ribosomal Protein S9
14.
Cancer Sci ; 108(1): 108-115, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27761963

ABSTRACT

We previously reported that celecoxib, a selective COX-2 inhibitor, strongly inhibited human colon cancer cell proliferation by suppressing the Wnt/ß-catenin signaling pathway. 2,5-Dimethylcelecoxib (DM-celecoxib), a celecoxib analog that does not inhibit COX-2, has also been reported to have an antitumor effect. In the present study, we elucidated whether DM-celecoxib inhibits intestinal cancer growth, and its underlying mechanism of action. First, we compared the effect of DM-celecoxib with that of celecoxib on the human colon cancer cell lines HCT-116 and DLD-1. 2,5-Dimethylcelecoxib suppressed cell proliferation and inhibited T-cell factor 7-like 2 expression with almost the same strength as celecoxib. 2,5-Dimethylcelecoxib also inhibited the T-cell factor-dependent transcription activity and suppressed the expression of Wnt/ß-catenin target gene products cyclin D1 and survivin. Subsequently, we compared the in vivo effects of celecoxib and DM-celecoxib using the Mutyh-/- mouse model, in which oxidative stress induces multiple intestinal carcinomas. Serum concentrations of orally administered celecoxib and DM-celecoxib elevated to the levels enough to suppress cancer cell proliferation. Repeated treatment with celecoxib and DM-celecoxib markedly reduced the number and size of the carcinomas without showing toxicity. These results suggest that the central mechanism for the anticancer effect of celecoxib derivatives is the suppression of the Wnt/ß-catenin signaling pathway but not the inhibition of COX-2, and that DM-celecoxib might be a better lead compound candidate than celecoxib for the development of novel anticancer drugs.


Subject(s)
Celecoxib/pharmacology , Intestinal Neoplasms/drug therapy , Intestinal Neoplasms/pathology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Wnt Proteins/metabolism , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Animals , Blood Cell Count , Body Weight/drug effects , Celecoxib/blood , Celecoxib/therapeutic use , Cell Line, Tumor , DNA Glycosylases/deficiency , DNA Glycosylases/genetics , Female , Humans , Intestinal Neoplasms/metabolism , Male , Mice , Oxidative Stress/drug effects , Proteolysis/drug effects , Pyrazoles/blood , Pyrazoles/therapeutic use , Sulfonamides/blood , Sulfonamides/therapeutic use , TCF Transcription Factors/metabolism , Transcription Factor 7-Like 2 Protein/metabolism , Transcription, Genetic/drug effects , beta Catenin/antagonists & inhibitors
15.
In Vivo ; 30(6): 769-776, 2016.
Article in English | MEDLINE | ID: mdl-27815460

ABSTRACT

BACKGROUND/AIM: Budding uninhibited by benzimidazole-related 1 (BUBR1) plays an important role in the spindle assembly checkpoint to prevent chromosome missegregation and aneuploidy during mitosis. We previously generated mutant mice that express BUBR1 at only 20% of the normal level (BubR1L/L mice). Here, we examined the effect of low BUBR1 expression on oxidative stress-induced carcinogenesis in mice. MATERIALS AND METHODS: We orally administered either a potassium bromate (KBrO3) solution (2 g/l) or tap water to BubR1L/L and wild-type (BubR1+/+)mice for 16 weeks and examined the subsequent incidence of tumours. RESULTS: KBrO3-treated BubR1L/L mice showed significantly higher mortality than the KBrO3-treated BubR1+/+ and control tap water-treated mice (p=0.0082). Histopathological and immunohistochemical analyses revealed that the spleens of surviving BubR1L/L mice were occupied by non-B-, non-T-cells with high proliferative potential. CONCLUSION: Our results indicate that low BUBR1 expression increases oxidative stress-induced mortality in mice, possibly caused by splenic neoplasms.


Subject(s)
Bromates/toxicity , Cell Cycle Proteins/metabolism , Hematopoietic Stem Cells/drug effects , Oxidative Stress/drug effects , Protein Serine-Threonine Kinases/metabolism , Animals , Carcinogens/toxicity , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Deoxyadenosines/urine , Hematopoietic Stem Cells/metabolism , Kaplan-Meier Estimate , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Spleen/drug effects , Spleen/metabolism , Spleen/pathology , Testis/drug effects , Testis/metabolism
16.
Sci Rep ; 6: 32399, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27561386

ABSTRACT

A delay in liver regeneration after partial hepatectomy (PHx) leads to acute liver injury, and such delays are frequently observed in aged patients. BubR1 (budding uninhibited by benzimidazole-related 1) controls chromosome mitotic segregation through the spindle assembly checkpoint, and BubR1 down-regulation promotes aging-associated phenotypes. In this study we investigated the effects of BubR1 insufficiency on liver regeneration in mice. Low-BubR1-expressing mutant (BubR1(L/L)) mice had a delayed recovery of the liver weight-to-body weight ratio and increased liver deviation enzyme levels after PHx. Microscopic observation of BubR1(L/L) mouse liver showed an increased number of necrotic hepatocytes and intercalated disc anomalies, resulting in widened inter-hepatocyte and perisinusoidal spaces, smaller hepatocytes and early-stage microvilli atrophy. Up-regulation of desmocollin-1 (DSC1) was observed in wild-type, but not BubR1(L/L), mice after PHx. In addition, knockdown of BubR1 expression caused down-regulation of DSC1 in a human keratinocyte cell line. BubR1 insufficiency results in the impaired liver regeneration through weakened microstructural adaptation against PHx, enhanced transient liver failure and delayed hepatocyte proliferation. Thus, our data suggest that a reduction in BubR1 levels causes failure of liver regeneration through the DSC1 abnormality.


Subject(s)
Cell Cycle Proteins/genetics , Hepatectomy/methods , Liver Regeneration/genetics , Membrane Glycoproteins/genetics , Protein Serine-Threonine Kinases/genetics , Age Factors , Animals , Cell Cycle Proteins/metabolism , Cell Line , Desmocollins , Humans , Keratinocytes/metabolism , Male , Membrane Glycoproteins/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Protein Serine-Threonine Kinases/metabolism , RNA Interference
17.
Nucleosides Nucleotides Nucleic Acids ; 35(7): 379-88, 2016 Jul 02.
Article in English | MEDLINE | ID: mdl-27253876

ABSTRACT

A 5'-tailed duplex (TD) DNA corrects a base-substitution mutation. In this study, the effects of insertion and deletion (indel) mismatches distant from the target position on the gene correction were examined. Three target plasmid DNAs with and without indel mismatches ∼330 bases distant from the correction target position were prepared, and introduced into HeLa cells together with the TD. The indel mismatches improved the gene correction efficiency and specificity without sequence conversions at the indel mismatch site. These results suggested that the gene correction efficiency and specificity are increased when an appropriate second mismatch is introduced into the TD fragment.


Subject(s)
Base Pair Mismatch , INDEL Mutation , Targeted Gene Repair/methods , Base Sequence , DNA Mismatch Repair , HeLa Cells , Humans , Plasmids/genetics , Sequence Analysis, DNA
18.
J Pharmacol Sci ; 127(4): 446-55, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25913757

ABSTRACT

Differentiation-inducing factor-1 (DIF-1) produced by Dictyostelium discoideum strongly inhibits the proliferation of various types of cancer cells by suppression of the Wnt/ß-catenin signal transduction pathway. In the present study, we examined the effect of differentiation-inducing factor-3 (DIF-3), a monochlorinated metabolite of DIF-1 that is also produced by D. discoideum, on human colon cancer cell lines HCT-116 and DLD-1. DIF-3 strongly inhibited cell proliferation by arresting the cell cycle at the G0/G1 phase. DIF-3 reduced the expression levels of cyclin D1 and c-Myc by facilitating their degradation via activation of GSK-3ß in a time and dose-dependent manner. In addition, DIF-3 suppressed the expression of T-cell factor 7-like 2, a key transcription factor in the Wnt/ß-catenin signaling pathway, thereby reducing the mRNA levels of cyclin D1 and c-Myc. Subsequently, we examined the in vivo effects of DIF-3 in Mutyh(-/-) mice with oxidative stress-induced intestinal cancers. Repeated oral administration of DIF-3 markedly reduced the number and size of cancers at a level comparable to that of DIF-1. These data suggest that DIF-3 inhibits intestinal cancer cell proliferation in vitro and in vivo, probably by mechanisms similar to those identified in DIF-1 actions, and that DIF-3 may be a potential novel anti-cancer agent.


Subject(s)
Antineoplastic Agents , Cell Proliferation/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Hexanones/pharmacology , Administration, Oral , Animals , Cell Cycle/drug effects , Cell Proliferation/genetics , Cyclin D1/genetics , Cyclin D1/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Gene Expression/drug effects , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , HCT116 Cells , Hexanones/administration & dosage , Humans , Mice, Transgenic , Oxidative Stress , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/metabolism , Signal Transduction/drug effects , Transcription Factor 7-Like 2 Protein/metabolism , Wnt Signaling Pathway/drug effects , beta Catenin/physiology
19.
DNA Repair (Amst) ; 29: 139-46, 2015 May.
Article in English | MEDLINE | ID: mdl-25733082

ABSTRACT

Xeroderma pigmentosum variant (XP-V) is a human rare inherited recessive disease, predisposed to sunlight-induced skin cancer, which is caused by deficiency in DNA polymerase η (Polη). Polη catalyzes accurate translesion synthesis (TLS) past pyrimidine dimers, the most prominent UV-induced lesions. DNA polymerase ι (Polι) is a paralog of Polη that has been suggested to participate in TLS past UV-induced lesions, but its function in vivo remains uncertain. We have previously reported that Polη-deficient and Polη/Polι double-deficient mice showed increased susceptibility to UV-induced carcinogenesis. Here, we investigated UV-induced mutation frequencies and spectra in the epidermal cells of Polη- and/or Polι-deficient mice. While Polη-deficient mice showed significantly higher UV-induced mutation frequencies than wild-type mice, Polι deficiency did not influence the frequencies in the presence of Polη. Interestingly, the frequencies in Polη/Polι double-deficient mice were statistically lower than those in Polη-deficient mice, although they were still higher than those of wild-type mice. Sequence analysis revealed that most of the UV-induced mutations in Polη-deficient and Polη/Polι double-deficient mice were base substitutions at dipyrimidine sites. An increase in UV-induced mutations at both G:C and A:T pairs associated with Polη deficiency suggests that Polη contributes to accurate TLS past both thymine- and cytosine-containing dimers in vivo. A significant decrease in G:C to A:T transition in Polη/Polι double-deficient mice when compared with Polη-deficient mice suggests that Polι is involved in error-prone TLS past cytosine-containing dimers when Polη is inactivated.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Epidermis/metabolism , Pyrimidine Dimers/metabolism , Animals , DNA/metabolism , DNA/radiation effects , DNA Damage , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/genetics , Epidermal Cells , Epidermis/radiation effects , Mice , Mice, Knockout , Mutation , Ultraviolet Rays , DNA Polymerase iota
20.
Arterioscler Thromb Vasc Biol ; 35(2): 341-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25524773

ABSTRACT

OBJECTIVE: BubR1, a cell cycle-related protein, is an essential component of the spindle checkpoint that regulates cell division. Mice with BubR1 expression reduced to 10% of the normal level display a phenotype characterized by progeria; however, the involvement of BubR1 in vascular diseases is still unknown. We generated mice in which BubR1 expression was reduced to 20% (BubR1(L/L) mice) of that in wild-type mice (BubR1(+/+)) to investigate the effects of BubR1 on arterial intimal hyperplasia. APPROACH AND RESULTS: Ten-week-old male BubR1(L/L) and age-matched wild-type littermates (BubR1(+/+)) were used in this study. The left common carotid artery was ligated, and histopathologic examinations were conducted 4 weeks later. Bone marrow transplantation was also performed. Vascular smooth muscle cells (VSMCs) were isolated from the thoracic aorta to examine cell proliferation, migration, and cell cycle progression. Severe neointimal hyperplasia was observed after artery ligation in BubR1(+/+) mice, whereas BubR1(L/L) mice displayed nearly complete inhibition of neointimal hyperplasia. Bone marrow transplantation from all donors did not affect the reconstitution of 3 hematopoietic lineages, and neointimal hyperplasia was still suppressed after bone marrow transplantation from BubR1(+/+) mice to BubR1(L/L) mice. VSMC proliferation was impaired in BubR1(L/L) mice because of delayed entry into the S phase. VSMC migration was unaffected in these BubR1(L/L) mice. p38 mitogen-activated protein kinase-inhibited VSMCs showed low expression of BubR1, and BubR1-inhibited VSMCs showed low expression of p38. CONCLUSIONS: BubR1 may represent a new target molecule for treating pathological states of vascular remodeling, such as restenosis after angioplasty.


Subject(s)
Carotid Artery Diseases/metabolism , Cell Cycle Proteins/deficiency , Cell Proliferation , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima , Protein Serine-Threonine Kinases/deficiency , Animals , Bone Marrow Transplantation , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Carotid Artery, Common/metabolism , Carotid Artery, Common/pathology , Carotid Artery, Common/surgery , Cell Cycle Proteins/genetics , Cell Movement , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Hyperplasia , Ligation , Male , Mice, 129 Strain , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/surgery , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , RNA Interference , S Phase Cell Cycle Checkpoints , Time Factors , Transfection , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...