Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
medRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826255

ABSTRACT

Background: Approximately 40% of people aged 65 or older experience memory loss, particularly in episodic memory. Identifying the genetic basis of episodic memory decline is crucial for uncovering its underlying causes. Methods: We investigated common and rare genetic variants associated with episodic memory decline in 742 (632 for rare variants) Ashkenazi Jewish individuals (mean age 75) from the LonGenity study. All-atom MD simulations were performed to uncover mechanistic insights underlying rare variants associated with episodic memory decline. Results: In addition to the common polygenic risk of Alzheimer's Disease (AD), we identified and replicated rare variant association in ITSN1 and CRHR2 . Structural analyses revealed distinct memory pathologies mediated by interfacial rare coding variants such as impaired receptor activation of corticotropin releasing hormone and dysregulated L-serine synthesis. Discussion: Our study uncovers novel risk loci for episodic memory decline. The identified underlying mechanisms point toward heterogeneous memory pathologies mediated by rare coding variants.

2.
medRxiv ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38854122

ABSTRACT

To investigate the pleiotropic mechanisms linking brain structure and function to alcohol drinking and tobacco smoking, we integrated genome-wide data generated by the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN; up to 805,431 participants) with information related to 3,935 brain imaging-derived phenotypes (IDPs) available from UK Biobank (N=33,224). We observed global genetic correlation of smoking behaviors with white matter hyperintensities, the morphology of the superior longitudinal fasciculus, and the mean thickness of pole-occipital. With respect to the latter brain IDP, we identified a local genetic correlation with age at which the individual began smoking regularly (hg38 chr2:35,895,678-36,640,246: rho=1, p=1.01×10 -5 ). This region has been previously associated with smoking initiation, educational attainment, chronotype, and cortical thickness. Our genetically informed causal inference analysis using both latent causal variable approach and Mendelian randomization linked the activity of prefrontal and premotor cortex and that of superior and inferior precentral sulci, and cingulate sulci to the number of alcoholic drinks per week (genetic causality proportion, gcp=0.38, p=8.9×10 -4 , rho=-0.18±0.07; inverse variance weighting, IVW beta=-0.04, 95%CI=-0.07 - -0.01). This relationship could be related to the role of these brain regions in the modulation of reward-seeking motivation and the processing of social cues. Overall, our brain-wide investigation highlighted that different pleiotropic mechanisms likely contribute to the relationship of brain structure and function with alcohol drinking and tobacco smoking, suggesting decision-making activities and chemosensory processing as modulators of propensity towards alcohol and tobacco consumption.

4.
medRxiv ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38712163

ABSTRACT

Importance: The X chromosome has remained enigmatic in Alzheimer's disease (AD), yet it makes up 5% of the genome and carries a high proportion of genes expressed in the brain, making it particularly appealing as a potential source of unexplored genetic variation in AD. Objectives: Perform the first large-scale X chromosome-wide association study (XWAS) of AD. Primary analyses are non-stratified, while secondary analyses evaluate sex-stratified effects. Design: Meta-analysis of genetic association studies in case-control, family-based, population-based, and longitudinal AD-related cohorts from the US Alzheimer's Disease Genetics Consortium (ADGC) and Alzheimer's Disease Sequencing Project (ADSP), the UK Biobank (UKB), the Finnish health registry (FinnGen), and the US Million Veterans Program (MVP). Risk for AD evaluated through case-control logistic regression analyses. Data were analyzed between January 2023 and March 2024. Setting: Genetic data available from high-density single-nucleotide polymorphism (SNP) microarrays and whole-genome sequencing (WGS). Summary statistics for multi-tissue expression and protein quantitative trait loci (QTL) available from published studies, enabling follow-up genetic colocalization analyses. Participants: 1,629,863 eligible participants were selected from referred and volunteer samples, of which 477,596 were excluded for analysis exclusion criteria. Number of participants who declined to participate in original studies was not available. Main Outcome and Measures: Risk for AD (odds ratio; OR) with 95% confidence intervals (CI). Associations were considered at X-chromosome-wide (P-value<1e-5) and genome-wide (P-value<5e-8) significance. Results: Analyses included 1,152,284 non-Hispanic White European ancestry subjects (57.3% females), including 138,558 cases. 6 independent genetic loci passed X-chromosome-wide significance, with 4 showing support for causal links between the genetic signal for AD and expression of nearby genes in brain and non-brain tissues. One of these 4 loci passed conservative genome-wide significance, with its lead variant centered on an intron of SLC9A7 (OR=1.054, 95%-CI=[1.035, 1.075]) and colocalization analyses prioritizing both the SLC9A7 and nearby CHST7 genes. Conclusion and Relevance: We performed the first large-scale XWAS of AD and identified the novel SLC9A7 locus. SLC9A7 regulates pH homeostasis in Golgi secretory compartments and is anticipated to have downstream effects on amyloid beta accumulation. Overall, this study significantly advances our knowledge of AD genetics and may provide novel biological drug targets.

6.
Alcohol Clin Exp Res (Hoboken) ; 48(5): 855-866, 2024 May.
Article in English | MEDLINE | ID: mdl-38462538

ABSTRACT

BACKGROUND: The gene variants ADH1B*2 (Arg48His, rs1229984) and ALDH2*2 (Glu504Lys, rs671) are common in East Asian populations but rare in other populations. We propose that selective pressures from pathogen exposure and dietary changes during the neolithic transition favored these variants. Thus, their current association with differences in alcohol sensitivity likely results from phenotypic plasticity rather than direct natural selection. METHODS: Samples sourced from the Allele Frequency Database (ALFRED) were utilized to compute the average frequency of ADH1B*2 and ALDH2*2 across 88 and 61 countries, respectively. Following computation of the average national allele frequencies, we tested the significance of their correlations with ecological variables. Subsequently, we subjected them to Principal Component Analysis (PCA) and Elastic Net regularization. For comprehensive evaluation, we collected individual-level phenotypic associations, compiling a Phenome-Wide Association Study (PheWAS) spanning multiple ethnicities. RESULTS: Following multiple testing correction, ADH1B*2 displayed significant correlations with Neolithic transition timing (r = 0.405, p.adj = 2.013e-03, n = 57) and historical trypanosome burden (r = -0.418, p.adj = 0.013, n = 57). The first two components of PCA explained 47.7% of the total variability across countries, with the top three contributors being the historical indices of population density and trypanosome and leprosy burdens. Historical burdens of the Mycobacteria tuberculosis and leprosy were the sole predictive variables with positive coefficients that survived Elastic Net regularization. CONCLUSIONS: Our analyses suggest that Mycobacteria may have played a role in the joint selection of ADH1B*2 and ALDH2*2, expanding the "toxic aldehyde hypothesis" to include Mycobacterium leprae. Additionally, our hypothesis, linked to dietary shifts from rice domestication, emphasizes nutritional deficiencies as a key element in the selective pressure exerted by Mycobacteria. This offers a plausible explanation for the high frequency of ADH1B*2 and ALDH2*2 in Asian populations.

7.
BMC Genomics ; 25(1): 185, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365607

ABSTRACT

BACKGROUND: Alpaca is a domestic South American camelid probably arising from the domestication of two wild camelids, the vicugna and the guanaco. Two phenotypes are described for alpaca, known as huacaya and suri. Huacaya fleece is characterized by compact, soft, and highly crimped fibers, while suri fleece is longer, straight, less crimped, and lustrous. The gene variants determining these phenotypes are still unknown, although previous studies suggested a dominant inheritance of the suri. Based on that, the aim of this study was the identification of the gene variants determining alpaca coat phenotypes through whole genome sequencing (WGS) analysis. RESULTS: The sample used includes two test-cross alpaca families, suri × huacaya, which produced two offspring, one with the suri phenotype and one with the huacaya phenotype. The analyzed sample was expanded through the addition of WGS data from six vicugnas and six guanacos; this because we assumed the absence of the gene variants linked to the suri phenotype in these wild species. The analysis of gene variant segregation with the suri phenotype, coupled with the filtering of gene variants present in the wild species, disclosed the presence in all the suri samples of a premature termination codon (PTC) in TRPV3 (transient receptor potential cation channel subfamily V member 3), a gene known to be involved in hair growth and cycling, thermal sensation, cold tolerance and adaptation in several species. Mutations in TRPV3 were previously associated with the alteration of hair structure leading to an impaired formation of the hair canal and the hair shaft in mouse. This PTC in TRPV3, due to a G > T substitution (p.Glu475*), results in a loss of 290 amino acids from the canonical translated protein, plausibly leading to a physiological dysfunction. CONCLUSION: The present results suggest that the suri phenotype may arise from a TRPV3 gene variant which may explain some of the suri features such as its longer hair fibre with lower number of cuticular scales compared to huacaya.


Subject(s)
Camelids, New World , Animals , Humans , Mice , Camelids, New World/genetics , Codon, Nonsense , Hair , Mutation , Phenotype , TRPV Cation Channels/genetics , Whole Genome Sequencing
8.
JAMA Neurol ; 80(12): 1284-1294, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37930705

ABSTRACT

Importance: Apolipoprotein E (APOE)*2 and APOE*4 are, respectively, the strongest protective and risk-increasing, common genetic variants for late-onset Alzheimer disease (AD), making APOE status highly relevant toward clinical trial design and AD research broadly. The associations of APOE genotypes with AD are modulated by age, sex, race and ethnicity, and ancestry, but these associations remain unclear, particularly among racial and ethnic groups understudied in the AD and genetics research fields. Objective: To assess the stratified associations of APOE genotypes with AD risk across sex, age, race and ethnicity, and global population ancestry. Design, Setting, Participants: This genetic association study included case-control, family-based, population-based, and longitudinal AD-related cohorts that recruited referred and volunteer participants. Data were analyzed between March 2022 and April 2023. Genetic data were available from high-density, single-nucleotide variant microarrays, exome microarrays, and whole-exome and whole-genome sequencing. Summary statistics were ascertained from published AD genetic studies. Main Outcomes and Measures: The main outcomes were risk for AD (odds ratios [ORs]) and risk of conversion to AD (hazard ratios [HRs]), with 95% CIs. Risk for AD was evaluated through case-control logistic regression analyses. Risk of conversion to AD was evaluated through Cox proportional hazards regression survival analyses. Results: Among 68 756 unique individuals, analyses included 21 852 East Asian (demographic data not available), 5738 Hispanic (68.2% female; mean [SD] age, 75.4 [8.8] years), 7145 non-Hispanic Black (hereafter referred to as Black) (70.8% female; mean [SD] age, 78.4 [8.2] years), and 34 021 non-Hispanic White (hereafter referred to as White) (59.3% female; mean [SD] age, 77.0 [9.1] years) individuals. There was a general, stepwise pattern of ORs for APOE*4 genotypes and AD risk across race and ethnicity groups. Odds ratios for APOE*34 and AD risk attenuated following East Asian (OR, 4.54; 95% CI, 3.99-5.17),White (OR, 3.46; 95% CI, 3.27-3.65), Black (OR, 2.18; 95% CI, 1.90-2.49) and Hispanic (OR, 1.90; 95% CI, 1.65-2.18) individuals. Similarly, ORs for APOE*22+23 and AD risk attenuated following White (OR, 0.53, 95% CI, 0.48-0.58), Black (OR, 0.69, 95% CI, 0.57-0.84), and Hispanic (OR, 0.89; 95% CI, 0.72-1.10) individuals, with no association for Hispanic individuals. Deviating from the global pattern of ORs, APOE*22+23 was not associated with AD risk in East Asian individuals (OR, 0.97; 95% CI, 0.77-1.23). Global population ancestry could not explain why Hispanic individuals showed APOE associations with less pronounced AD risk compared with Black and White individuals. Within Black individuals, decreased global African ancestry or increased global European ancestry showed a pattern of APOE*4 dosage associated with increasing AD risk, but no such pattern was apparent for APOE*2 dosage with AD risk. The sex-by-age-specific interaction effect of APOE*34 among White individuals (higher risk in women) was reproduced but shifted to ages 60 to 70 years (OR, 1.48; 95% CI, 1.10-2.01) and was additionally replicated in a meta-analysis of Black individuals and Hispanic individuals (OR, 1.72; 95% CI, 1.01-2.94). Conclusion and Relevance: Through recent advances in AD-related genetic cohorts, this study provided the largest-to-date overview of the association of APOE with AD risk across age, sex, race and ethnicity, and population ancestry. These novel insights are critical to guide AD clinical trial design and research.


Subject(s)
Alzheimer Disease , Humans , Female , Aged , Middle Aged , Male , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , White People/genetics , Antibodies, Monoclonal , Apolipoproteins E/genetics , Amyloid beta-Peptides/genetics , Genotype , Apolipoprotein E4/genetics
9.
Parasit Vectors ; 16(1): 427, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986088

ABSTRACT

BACKGROUND: Recently, two invasive Aedes mosquito species, Ae. japonicus and Ae. koreicus, are circulating in several European countries posing potential health risks to humans and animals. Vector control is the main option to prevent mosquito-borne diseases, and an accurate genome sequence of these mosquitoes is essential to better understand their biology and to develop effective control strategies. METHODS: A de novo genome assembly of Ae. japonicus (Ajap1) and Ae. koreicus (Akor1) has been produced based on a hybrid approach that combines Oxford Nanopore long-read and Illumina short-read data. Their quality was ascertained using various metrics. Masking of repetitive elements, gene prediction and functional annotation was performed. RESULTS: Sequence analysis revealed a very high presence of repetitive DNA and, among others, thermal adaptation genes and insecticide-resistance genes. Through the RNA-seq analysis of larvae and adults of Ae. koreicus and Ae. japonicus exposed to different temperatures, we also identified genes showing a differential temperature-dependent activation. CONCLUSIONS: The assembly of Akor1 and Ajap1 genomes constitutes the first updated collective knowledge of the genomes of both mosquito species, providing the possibility of understanding key mechanisms of their biology such as the ability to adapt to harsh climates and to develop insecticide-resistance mechanisms.


Subject(s)
Aedes , Insecticides , Animals , Humans , Aedes/genetics , Introduced Species , Mosquito Vectors/genetics , Europe
11.
Nat Commun ; 14(1): 5753, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37717018

ABSTRACT

The aromatic amino acid L-tryptophan (Trp) is essentially metabolized along the host and microbial pathways. While much is known about the role played by downstream metabolites of each pathways in intestinal homeostasis, their role in lung immune homeostasis is underappreciated. Here we have examined the role played by the Trp hydroxylase/5-hydroxytryptamine (5-HT) pathway in calibrating host and microbial Trp metabolism during Aspergillus fumigatus pneumonia. We found that 5-HT produced by mast cells essentially contributed to pathogen clearance and immune homeostasis in infection by promoting the host protective indoleamine-2,3-dioxygenase 1/kynurenine pathway and limiting the microbial activation of the indole/aryl hydrocarbon receptor pathway. This occurred via regulation of lung and intestinal microbiota and signaling pathways. 5-HT was deficient in the sputa of patients with Cystic fibrosis, while 5-HT supplementation restored the dysregulated Trp partitioning in murine disease. These findings suggest that 5-HT, by bridging host-microbiota Trp partitioning, may have clinical effects beyond its mood regulatory function in respiratory pathologies with an inflammatory component.


Subject(s)
Aspergillosis , Influenza, Human , Microbiota , Mycoses , Pneumonia , Humans , Animals , Mice , Tryptophan , Serotonin
12.
Aging Cell ; 22(9): e13938, 2023 09.
Article in English | MEDLINE | ID: mdl-37621137

ABSTRACT

Advanced age is the largest risk factor for late-onset Alzheimer's disease (LOAD), a disease in which susceptibility correlates to almost all hallmarks of aging. Shared genetic signatures between LOAD and longevity were frequently hypothesized, likely characterized by distinctive epistatic and pleiotropic interactions. Here, we applied a multidimensional reduction approach to detect gene-gene interactions affecting LOAD in a large dataset of genomic variants harbored by genes in the insulin/IGF1 signaling, DNA repair, and oxidative stress pathways, previously investigated in human longevity. The dataset was generated from a collection of publicly available Genome Wide Association Studies, comprising a total of 2,469 gene variants genotyped in 20,766 subjects of Northwestern European ancestry (11,038 LOAD cases and 9,728 controls). The stratified analysis according to APOE*4 status and sex corroborated evidence that pathways leading to longevity also contribute to LOAD. Among the significantly interacting genes, PTPN1, TXNRD1, and IGF1R were already found enriched in gene-gene interactions affecting survival to old age. Furthermore, interacting variants associated with LOAD in a sex- and APOE-specific way. Indeed, while in APOE*4 female carriers we found several inter-pathway interactions, no significant epistasis was found in APOE*4 negative females; conversely, in males, significant intra- and inter-pathways epistasis emerged according to APOE*4 status. These findings suggest that interactions of risk factors may drive different trajectories of cognitive aging. Beyond helping to disentangle the genetic architecture of LOAD, such knowledge may improve precision in predicting the risk of dementia and enable effective sex- and APOE-stratified preventive and therapeutic interventions for LOAD.


Subject(s)
Alzheimer Disease , Longevity , Male , Female , Humans , Longevity/genetics , Alzheimer Disease/genetics , Epistasis, Genetic , Genome-Wide Association Study , Apolipoprotein E4/genetics
13.
BMC Genomics ; 24(1): 470, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37605116

ABSTRACT

BACKGROUND: Alpaca (Vicugna pacos), llama (Lama glama), vicugna (Vicugna vicugna) and guanaco (Lama guanicoe), are the camelid species distributed over the Andean high-altitude grasslands, the Altiplano, and the Patagonian arid steppes. Despite the wide interest on these animals, most of the loci under selection are still unknown. Using whole-genome sequencing (WGS) data we investigated the occurrence and the distribution of Runs Of Homozygosity (ROHs) across the South American Camelids (SACs) genome to identify the genetic relationship between the four species and the potential signatures of selection. RESULTS: A total of 37 WGS samples covering the four species was included in the final analysis. The multi-dimensional scaling approach showed a clear separation between the four species; however, admixture analysis suggested a strong genetic introgression from vicugna and llama to alpaca. Conversely, very low genetic admixture of the guanaco with the other SACs was found. The four species did not show significant differences in the number, length of ROHs (100-500 kb) and genomic inbreeding values. Longer ROHs (> 500 kb) were found almost exclusively in alpaca. Seven overlapping ROHs were shared by alpacas, encompassing nine loci (FGF5, LOC107034918, PRDM8, ANTXR2, LOC102534792, BSN, LOC116284892, DAG1 and RIC8B) while nine overlapping ROHs were found in llama with twenty-five loci annotated (ERC2, FZD9, BAZ1B, BCL7B, LOC116284208, TBL2, MLXIPL, PHF20, TRNAD-AUC, LOC116284365, RBM39, ARFGEF2, DCAF5, EXD2, HSPB11, LRRC42, LDLRAD1, TMEM59, LOC107033213, TCEANC2, LOC102545169, LOC116278408, SMIM15, NDUFAF2 and RCOR1). Four overlapping ROHs, with three annotated loci (DLG1, KAT6B and PDE4D) and three overlapping ROHs, with seven annotated genes (ATP6V1E1, BCL2L13, LOC116276952, BID, KAT6B, LOC116282667 and LOC107034552), were detected for vicugna and guanaco, respectively. CONCLUSIONS: The signatures of selection revealed genomic areas potentially selected for production traits as well as for natural adaptation to harsh environment. Alpaca and llama hint a selection driven by environment as well as by farming purpose while vicugna and guanaco showed selection signals for adaptation to harsh environment. Interesting, signatures of selection on KAT6B gene were identified for both vicugna and guanaco, suggesting a positive effect on wild populations fitness. Such information may be of interest to further ecological and animal production studies.


Subject(s)
Camelids, New World , Animals , Humans , Camelids, New World/genetics , Racial Groups , Acclimatization , Agriculture , South America , Receptors, Peptide , Transcription Factors , Histone Acetyltransferases
14.
Microorganisms ; 11(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36838276

ABSTRACT

The increasing amounts of municipal solid waste and their management in landfills caused an increase in the production of leachate, a liquid formed by the percolation of rainwater through the waste. Leachate creates serious problems to municipal wastewater treatment plants; indeed, its high levels of ammonia are toxic for bacterial cells and drastically reduce the biological removal of nitrogen by activated sludge. In the present work, we studied, using a metagenomic approach based on next-generation sequencing (NGS), the microbial composition of sludge in the municipal wastewater treatment plant of Porto Sant'Elpidio (Italy). Through activated sludge enrichment experiments based on the Repetitive Re-Inoculum Assay, we were able to select and identify a minimal bacterial community capable of degrading high concentrations of ammonium (NH4+-N ≅ 350 mg/L) present in a leachate-based medium. The analysis of NGS data suggests that seven families of bacteria (Alcaligenaceae, Nitrosomonadaceae, Caulobacteraceae, Xanthomonadaceae, Rhodanobacteraceae, Comamonadaceae and Chitinophagaceae) are mainly responsible for ammonia oxidation. Furthermore, we isolated from the enriched sludge three genera (Klebsiella sp., Castellaniella sp. and Acinetobacter sp.) capable of heterotrophic nitrification coupled with aerobic denitrification. These bacteria released a trace amount of both nitrite and nitrate possibly transforming ammonia into gaseous nitrogen. Our findings represent the starting point to produce an optimized microorganisms's mixture for the biological removal of ammonia contained in leachate.

15.
JAMA ; 329(7): 551-560, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36809323

ABSTRACT

Importance: Numerous studies have established the association of the common APOE ε2 and APOE ε4 alleles with Alzheimer disease (AD) risk across ancestries. Studies of the interaction of these alleles with other amino acid changes on APOE in non-European ancestries are lacking and may improve ancestry-specific risk prediction. Objective: To determine whether APOE amino acid changes specific to individuals of African ancestry modulate AD risk. Design, Setting, and Participants: Case-control study including 31 929 participants and using a sequenced discovery sample (Alzheimer Disease Sequencing Project; stage 1) followed by 2 microarray imputed data sets derived from the Alzheimer Disease Genetic Consortium (stage 2, internal replication) and the Million Veteran Program (stage 3, external validation). This study combined case-control, family-based, population-based, and longitudinal AD cohorts, which recruited participants (1991-2022) in primarily US-based studies with 1 US/Nigerian study. Across all stages, individuals included in this study were of African ancestry. Exposures: Two APOE missense variants (R145C and R150H) were assessed, stratified by APOE genotype. Main Outcomes and Measures: The primary outcome was AD case-control status, and secondary outcomes included age at AD onset. Results: Stage 1 included 2888 cases (median age, 77 [IQR, 71-83] years; 31.3% male) and 4957 controls (median age, 77 [IQR, 71-83] years; 28.0% male). In stage 2, across multiple cohorts, 1201 cases (median age, 75 [IQR, 69-81] years; 30.8% male) and 2744 controls (median age, 80 [IQR, 75-84] years; 31.4% male) were included. In stage 3, 733 cases (median age, 79.4 [IQR, 73.8-86.5] years; 97.0% male) and 19 406 controls (median age, 71.9 [IQR, 68.4-75.8] years; 94.5% male) were included. In ε3/ε4-stratified analyses of stage 1, R145C was present in 52 individuals with AD (4.8%) and 19 controls (1.5%); R145C was associated with an increased risk of AD (odds ratio [OR], 3.01; 95% CI, 1.87-4.85; P = 6.0 × 10-6) and was associated with a reported younger age at AD onset (ß, -5.87 years; 95% CI, -8.35 to -3.4 years; P = 3.4 × 10-6). Association with increased AD risk was replicated in stage 2 (R145C was present in 23 individuals with AD [4.7%] and 21 controls [2.7%]; OR, 2.20; 95% CI, 1.04-4.65; P = .04) and was concordant in stage 3 (R145C was present in 11 individuals with AD [3.8%] and 149 controls [2.7%]; OR, 1.90; 95% CI, 0.99-3.64; P = .051). Association with earlier AD onset was replicated in stage 2 (ß, -5.23 years; 95% CI, -9.58 to -0.87 years; P = .02) and stage 3 (ß, -10.15 years; 95% CI, -15.66 to -4.64 years; P = 4.0 × 10-4). No significant associations were observed in other APOE strata for R145C or in any APOE strata for R150H. Conclusions and Relevance: In this exploratory analysis, the APOE ε3[R145C] missense variant was associated with an increased risk of AD among individuals of African ancestry with the ε3/ε4 genotype. With additional external validation, these findings may inform AD genetic risk assessment in individuals of African ancestry.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Black People , Aged , Aged, 80 and over , Female , Humans , Male , Alleles , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Black People/genetics , Case-Control Studies , Genotype , Risk Factors , Mutation, Missense
16.
Am J Respir Cell Mol Biol ; 68(3): 288-301, 2023 03.
Article in English | MEDLINE | ID: mdl-36252182

ABSTRACT

Hypoxia contributes to the exaggerated yet ineffective airway inflammation that fails to oppose infections in cystic fibrosis (CF). However, the potential for impairment of essential immune functions by HIF-1α (hypoxia-inducible factor 1α) inhibition demands a better comprehension of downstream hypoxia-dependent pathways that are amenable for manipulation. We assessed here whether hypoxia may interfere with the activity of AhR (aryl hydrocarbon receptor), a versatile environmental sensor highly expressed in the lungs, where it plays a homeostatic role. We used murine models of Aspergillus fumigatus infection in vivo and human cells in vitro to define the functional role of AhR in CF, evaluate the impact of hypoxia on AhR expression and activity, and assess whether AhR agonism may antagonize hypoxia-driven inflammation. We demonstrated that there is an important interferential cross-talk between the AhR and HIF-1α signaling pathways in murine and human CF, in that HIF-1α induction squelched the normal AhR response through an impaired formation of the AhR:ARNT (aryl hydrocarbon receptor nuclear translocator)/HIF-1ß heterodimer. However, functional studies and analysis of the AhR genetic variability in patients with CF proved that AhR agonism could prevent hypoxia-driven inflammation, restore immune homeostasis, and improve lung function. This study emphasizes the contribution of environmental factors, such as infections, in CF disease progression and suggests the exploitation of hypoxia:xenobiotic receptor cross-talk for antiinflammatory therapy in CF.


Subject(s)
Cystic Fibrosis , Receptors, Aryl Hydrocarbon , Humans , Mice , Animals , Receptors, Aryl Hydrocarbon/metabolism , Hypoxia/metabolism , Signal Transduction , Inflammation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
17.
J Appl Genet ; 63(4): 703-716, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36074326

ABSTRACT

Innovative models for medical research are strongly required nowadays. Convincing evidence supports dog as the most suitable spontaneous model for several human genetic diseases. Decades of studies on dog genome allowed the identification of hundreds of mutations causing genetic disorders, many of which are proposed as counterparts responsible for human diseases. Traditionally, the murine model is the most extensively used in human translational research. However, this species shows large physiological differences from humans, and it is kept under a controlled artificial environment. Conversely, canine genetic disorders often show pathophysiological and clinical features highly resembling the human counterpart. In addition, dogs share the same environment with humans; therefore, they are naturally exposed to many risk factors. Thus, different branches of translational medicine aim to study spontaneously occurring diseases in dogs to provide a more reliable model for human disorders. This review offers a comprehensive overview of the knowledge and resources available today for all the researchers involved in the field of dog-human translational medicine. Some of the main successful examples from dog-human translational genomics are reported, such as the canine association studies which helped to identify the causal mutation in the human counterpart. We also illustrated the ongoing projects aiming to create public canine big datasets. Finally, specific online databases are discussed along with several information resources that can speed up clinical translational research.


Subject(s)
Dog Diseases , Genomics , Dogs , Humans , Animals , Mice , Disease Models, Animal , Dog Diseases/genetics , Mutation , Genome, Human
18.
Neurol Genet ; 8(5): e200012, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35966919

ABSTRACT

Background and Objectives: Exome sequencing (ES) and genome sequencing (GS) are expected to be critical to further elucidate the missing genetic heritability of Alzheimer disease (AD) risk by identifying rare coding and/or noncoding variants that contribute to AD pathogenesis. In the United States, the Alzheimer Disease Sequencing Project (ADSP) has taken a leading role in sequencing AD-related samples at scale, with the resultant data being made publicly available to researchers to generate new insights into the genetic etiology of AD. To achieve sufficient power, the ADSP has adapted a study design where subsets of larger AD cohorts are collected and sequenced across multiple centers, using a variety of sequencing platforms. This approach may lead to variable variant quality across sequencing centers and/or platforms. In this study, we sought to implement and evaluate filters that can be applied fast to robustly remove variant-level artifacts in the ADSP data. Methods: We implemented a robust quality control procedure to handle ADSP data. We evaluated this procedure while performing exome-wide and genome-wide association analyses on AD risk using the latest ADSP whole ES (WES) and whole GS (WGS) data releases (NG00067.v5). Results: We observed that many variants displayed large variation in allele frequencies across sequencing centers/platforms and contributed to spurious association signals with AD risk. We also observed that sequencing platform/center adjustment in association models could not fully account for these spurious signals. To address this issue, we designed and implemented variant filters that could capture and remove these center-specific/platform-specific artifactual variants. Discussion: We derived a fast and robust approach to filter variants that represent sequencing center-related or platform-related artifacts underlying spurious associations with AD risk in ADSP WES and WGS data. This approach will be important to support future robust genetic association studies on ADSP data, as well as other studies with similar designs.

19.
Nat Med ; 28(8): 1679-1692, 2022 08.
Article in English | MEDLINE | ID: mdl-35915156

ABSTRACT

We report a genome-wide association study (GWAS) of coronary artery disease (CAD) incorporating nearly a quarter of a million cases, in which existing studies are integrated with data from cohorts of white, Black and Hispanic individuals from the Million Veteran Program. We document near equivalent heritability of CAD across multiple ancestral groups, identify 95 novel loci, including nine on the X chromosome, detect eight loci of genome-wide significance in Black and Hispanic individuals, and demonstrate that two common haplotypes at the 9p21 locus are responsible for risk stratification in all populations except those of African origin, in which these haplotypes are virtually absent. Moreover, in the largest GWAS for angiographically derived coronary atherosclerosis performed to date, we find 15 loci of genome-wide significance that robustly overlap with established loci for clinical CAD. Phenome-wide association analyses of novel loci and polygenic risk scores (PRSs) augment signals related to insulin resistance, extend pleiotropic associations of these loci to include smoking and family history, and precisely document the markedly reduced transferability of existing PRSs to Black individuals. Downstream integrative analyses reinforce the critical roles of vascular endothelial, fibroblast, and smooth muscle cells in CAD susceptibility, but also point to a shared biology between atherosclerosis and oncogenesis. This study highlights the value of diverse populations in further characterizing the genetic architecture of CAD.


Subject(s)
Coronary Artery Disease , Genome-Wide Association Study , Coronary Artery Disease/genetics , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Risk Factors
20.
Clin Transl Sci ; 15(8): 1880-1886, 2022 08.
Article in English | MEDLINE | ID: mdl-35684976

ABSTRACT

Remdesivir is the first US Food and Drug Administration (FDA)-approved drug for the treatment of coronavirus disease 2019 (COVID-19). We conducted a retrospective pharmacogenetic study to examine remdesivir-associated liver enzyme elevation among Million Veteran Program participants hospitalized with COVID-19 between March 15, 2020, and June 30, 2021. Pharmacogene phenotypes were assigned using Stargazer. Linear regression was performed on peak log-transformed enzyme values, stratified by population, adjusted for age, sex, baseline liver enzymes, comorbidities, and 10 population-specific principal components. Patients on remdesivir had higher peak alanine aminotransferase (ALT) values following treatment initiation compared with patients not receiving remdesivir. Remdesivir administration was associated with a 33% and 24% higher peak ALT in non-Hispanic White (NHW) and non-Hispanic Black (NHB) participants (p < 0.001), respectively. In a multivariable model, NHW CYP2C19 intermediate/poor metabolizers had a 9% increased peak ALT compared with NHW normal/rapid/ultrarapid metabolizers (p = 0.015); this association was not observed in NHB participants. In summary, remdesivir-associated ALT elevations appear to be multifactorial, and further studies are needed.


Subject(s)
COVID-19 Drug Treatment , Veterans , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Humans , Liver , Pharmacogenomic Variants , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...