Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4962, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862536

ABSTRACT

In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription. However, the extent to which transcription shapes the global protein acetylation landscapes is not known. Here, we show that global protein acetylation remains virtually unaltered after acute transcription inhibition. Transcription inhibition ablates the co-transcriptionally occurring ubiquitylation of H2BK120 but does not reduce histone acetylation. The combined inhibition of transcription and CBP/p300 further demonstrates that acetyltransferases remain active and continue to acetylate histones independently of transcription. Together, these results show that histone acetylation is not a mere consequence of transcription; acetyltransferase recruitment and activation are uncoupled from the act of transcription, and histone and non-histone protein acetylation are sustained in the absence of ongoing transcription.


Subject(s)
Histones , Transcription, Genetic , Ubiquitination , Acetylation , Histones/metabolism , Humans , p300-CBP Transcription Factors/metabolism , Protein Processing, Post-Translational , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Lysine/metabolism
2.
Cell ; 187(11): 2875-2892.e21, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38626770

ABSTRACT

Ubiquitylation regulates most proteins and biological processes in a eukaryotic cell. However, the site-specific occupancy (stoichiometry) and turnover rate of ubiquitylation have not been quantified. Here we present an integrated picture of the global ubiquitylation site occupancy and half-life. Ubiquitylation site occupancy spans over four orders of magnitude, but the median ubiquitylation site occupancy is three orders of magnitude lower than that of phosphorylation. The occupancy, turnover rate, and regulation of sites by proteasome inhibitors are strongly interrelated, and these attributes distinguish sites involved in proteasomal degradation and cellular signaling. Sites in structured protein regions exhibit longer half-lives and stronger upregulation by proteasome inhibitors than sites in unstructured regions. Importantly, we discovered a surveillance mechanism that rapidly and site-indiscriminately deubiquitylates all ubiquitin-specific E1 and E2 enzymes, protecting them against accumulation of bystander ubiquitylation. The work provides a systems-scale, quantitative view of ubiquitylation properties and reveals general principles of ubiquitylation-dependent governance.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitination , Humans , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Proteolysis , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Animals , Mice , Cell Line
3.
Nat Genet ; 55(4): 679-692, 2023 04.
Article in English | MEDLINE | ID: mdl-37024579

ABSTRACT

Chromatin features are widely used for genome-scale mapping of enhancers. However, discriminating active enhancers from other cis-regulatory elements, predicting enhancer strength and identifying their target genes is challenging. Here we establish histone H2B N-terminus multisite lysine acetylation (H2BNTac) as a signature of active enhancers. H2BNTac prominently marks candidate active enhancers and a subset of promoters and discriminates them from ubiquitously active promoters. Two mechanisms underlie the distinct H2BNTac specificity: (1) unlike H3K27ac, H2BNTac is specifically catalyzed by CBP/p300; (2) H2A-H2B, but not H3-H4, are rapidly exchanged through transcription-induced nucleosome remodeling. H2BNTac-positive candidate enhancers show a high validation rate in orthogonal enhancer activity assays and a vast majority of endogenously active enhancers are marked by H2BNTac and H3K27ac. Notably, H2BNTac intensity predicts enhancer strength and outperforms current state-of-the-art models in predicting CBP/p300 target genes. These findings have broad implications for generating fine-grained enhancer maps and modeling CBP/p300-dependent gene regulation.


Subject(s)
Enhancer Elements, Genetic , Histones , Histones/genetics , Histones/metabolism , Acetylation , Enhancer Elements, Genetic/genetics , Chromatin , Gene Expression Regulation
4.
Mol Cell ; 81(10): 2166-2182.e6, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33765415

ABSTRACT

The metazoan-specific acetyltransferase p300/CBP is involved in activating signal-induced, enhancer-mediated transcription of cell-type-specific genes. However, the global kinetics and mechanisms of p300/CBP activity-dependent transcription activation remain poorly understood. We performed genome-wide, time-resolved analyses to show that enhancers and super-enhancers are dynamically activated through p300/CBP-catalyzed acetylation, deactivated by the opposing deacetylase activity, and kinetic acetylation directly contributes to maintaining cell identity at very rapid (minutes) timescales. The acetyltransferase activity is dispensable for the recruitment of p300/CBP and transcription factors but essential for promoting the recruitment of TFIID and RNAPII at virtually all enhancers and enhancer-regulated genes. This identifies pre-initiation complex assembly as a dynamically controlled step in the transcription cycle and reveals p300/CBP-catalyzed acetylation as the signal that specifically promotes transcription initiation at enhancer-regulated genes. We propose that p300/CBP activity uses a "recruit-and-release" mechanism to simultaneously promote RNAPII recruitment and pause release and thereby enables kinetic activation of enhancer-mediated transcription.


Subject(s)
Enhancer Elements, Genetic , RNA Polymerase II/metabolism , Transcription Initiation, Genetic , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , Biocatalysis , Chromatin/metabolism , Down-Regulation/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Lysine/metabolism , Mice , Models, Biological , Nuclear Proteins/metabolism , Protein Binding , Transcription Factor TFIID/metabolism , Transcription Factors/metabolism
5.
Nat Rev Mol Cell Biol ; 20(8): 508, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31267066

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Commun ; 10(1): 1055, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837475

ABSTRACT

Lysine acetylation is a reversible posttranslational modification that occurs at thousands of sites on human proteins. However, the stoichiometry of acetylation remains poorly characterized, and is important for understanding acetylation-dependent mechanisms of protein regulation. Here we provide accurate, validated measurements of acetylation stoichiometry at 6829 sites on 2535 proteins in human cervical cancer (HeLa) cells. Most acetylation occurs at very low stoichiometry (median 0.02%), whereas high stoichiometry acetylation (>1%) occurs on nuclear proteins involved in gene transcription and on acetyltransferases. Analysis of acetylation copy numbers show that histones harbor the majority of acetylated lysine residues in human cells. Class I deacetylases target a greater proportion of high stoichiometry acetylation compared to SIRT1 and HDAC6. The acetyltransferases CBP and p300 catalyze a majority (65%) of high stoichiometry acetylation. This resource dataset provides valuable information for evaluating the impact of individual acetylation sites on protein function and for building accurate mechanistic models.


Subject(s)
Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Histones/metabolism , Protein Processing, Post-Translational , Proteomics/methods , Acetylation , Datasets as Topic , HeLa Cells , Histones/analysis , Humans , Lysine/metabolism , Proteome/analysis , Proteome/metabolism , Software , Statistics, Nonparametric
7.
Nat Rev Mol Cell Biol ; 20(3): 156-174, 2019 03.
Article in English | MEDLINE | ID: mdl-30467427

ABSTRACT

Nε-lysine acetylation was discovered more than half a century ago as a post-translational modification of histones and has been extensively studied in the context of transcription regulation. In the past decade, proteomic analyses have revealed that non-histone proteins are frequently acetylated and constitute a major portion of the acetylome in mammalian cells. Indeed, non-histone protein acetylation is involved in key cellular processes relevant to physiology and disease, such as gene transcription, DNA damage repair, cell division, signal transduction, protein folding, autophagy and metabolism. Acetylation affects protein functions through diverse mechanisms, including by regulating protein stability, enzymatic activity, subcellular localization and crosstalk with other post-translational modifications and by controlling protein-protein and protein-DNA interactions. In this Review, we discuss recent progress in our understanding of the scope, functional diversity and mechanisms of non-histone protein acetylation.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/physiology , Acetylation , Animals , Histones/metabolism , Humans , Lysine/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Proteomics , Signal Transduction
8.
Cell ; 174(1): 231-244.e12, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29804834

ABSTRACT

The acetyltransferases CBP and p300 are multifunctional transcriptional co-activators. Here, we combined quantitative proteomics with CBP/p300-specific catalytic inhibitors, bromodomain inhibitor, and gene knockout to reveal a comprehensive map of regulated acetylation sites and their dynamic turnover rates. CBP/p300 acetylates thousands of sites, including signature histone sites and a multitude of sites on signaling effectors and enhancer-associated transcriptional regulators. Time-resolved acetylome analyses identified a subset of CBP/p300-regulated sites with very rapid (<30 min) acetylation turnover, revealing a dynamic balance between acetylation and deacetylation. Quantification of acetylation, mRNA, and protein abundance after CBP/p300 inhibition reveals a kinetically competent network of gene expression that strictly depends on CBP/p300-catalyzed rapid acetylation. Collectively, our in-depth acetylome analyses reveal systems attributes of CBP/p300 targets, and the resource dataset provides a framework for investigating CBP/p300 functions and for understanding the impact of small-molecule inhibitors targeting its catalytic and bromodomain activities.


Subject(s)
Acetyltransferases/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation/drug effects , Acetyltransferases/antagonists & inhibitors , Animals , Cell Line , Gene Knockout Techniques , Half-Life , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Histones/metabolism , Humans , Isotope Labeling , Kinetics , Mass Spectrometry , Mice , Peptides/analysis , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Signal Transduction , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Transcriptome/drug effects , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/genetics
9.
Cell ; 173(4): 972-988.e23, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29656893

ABSTRACT

Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.


Subject(s)
DNA End-Joining Repair/drug effects , DNA-Binding Proteins/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Adaptor Proteins, Signal Transducing , BRCA1 Protein/antagonists & inhibitors , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Cycle Proteins , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Humans , Immunoglobulin Class Switching/drug effects , Mad2 Proteins/antagonists & inhibitors , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Mutagenesis, Site-Directed , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Telomere-Binding Proteins/antagonists & inhibitors , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Tumor Suppressor p53-Binding Protein 1/antagonists & inhibitors , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Nucleic Acids Res ; 44(15): 7242-50, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27185888

ABSTRACT

The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass.


Subject(s)
DNA Polymerase III/metabolism , DNA Replication , DNA/biosynthesis , DNA/chemistry , Alleles , Cell Line , DNA Damage , DNA Polymerase III/chemistry , DNA Polymerase III/genetics , DNA Polymerase III/isolation & purification , Holoenzymes/chemistry , Holoenzymes/genetics , Holoenzymes/isolation & purification , Holoenzymes/metabolism , Humans , Immunoglobulins/genetics , Ultraviolet Rays
11.
DNA Repair (Amst) ; 40: 67-76, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26994443

ABSTRACT

The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase plays a role in homologous recombination by facilitating the assembly of the Ubc13 ubiquitin-conjugating enzyme with the RNF8 ubiquitin ligase. To explore the role of HERC2 and RNF8 in PRR, we examined immunoglobulin diversification in chicken DT40 cells deficient in HERC2 and RNF8. Unexpectedly, the HERC2(-/-) and RNF8(-/-) cells and HERC2(-/-)/RNF8(-/-) double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2(-/-) and RNF8(-/-) mutants exhibit defective maintenance of replication fork progression immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks.


Subject(s)
DNA Replication , Guanine Nucleotide Exchange Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Chickens , DNA Damage , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Mutation , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Ultraviolet Rays
12.
Cell Rep ; 14(8): 1829-40, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26904940

ABSTRACT

The anaphase-promoting complex/cyclosome (APC/C) and the spindle assembly checkpoint (SAC), which inhibits the APC/C, are essential determinants of mitotic timing and faithful division of genetic material. Activation of the APC/C is known to depend on two APC/C-interacting E2 ubiquitin-conjugating enzymes-UBE2C and UBE2S. We show that APC/C activity in human cells is tuned by the combinatorial use of three E2s, namely UBE2C, UBE2S, and UBE2D. Genetic deletion of UBE2C and UBE2S, individually or in combination, leads to discriminative reduction in APC/C function and sensitizes cells to UBE2D depletion. Reduction of APC/C activity results in loss of switch-like metaphase-to-anaphase transition and, strikingly, renders cells insensitive to chemical inhibition of MPS1 and genetic ablation of MAD2, both of which are essential for the SAC. These results provide insights into the regulation of APC/C activity and demonstrate that the essentiality of the SAC is imposed by the strength of the APC/C.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/genetics , Mad2 Proteins/genetics , Spindle Apparatus/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Anaphase/drug effects , Anaphase-Promoting Complex-Cyclosome/antagonists & inhibitors , Anaphase-Promoting Complex-Cyclosome/metabolism , CRISPR-Cas Systems , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Survival/drug effects , Gene Deletion , Gene Expression , HCT116 Cells , Humans , M Phase Cell Cycle Checkpoints , Mad2 Proteins/deficiency , Metaphase/drug effects , Morpholines/pharmacology , Nocodazole/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Purines/pharmacology , Signal Transduction , Spindle Apparatus/drug effects , Spindle Apparatus/ultrastructure , Ubiquitin-Conjugating Enzymes/deficiency , Ubiquitin-Conjugating Enzymes/metabolism
13.
Dose Response ; 13(1)2015.
Article in English | MEDLINE | ID: mdl-26673567

ABSTRACT

Quantitative high-throughput screenings (qHTSs) for genotoxicity are conducted as part of comprehensive toxicology screening projects. The most widely used method is to compare the dose-response data of a wild-type and DNA repair gene knockout mutants, using model-fitting to the Hill equation (HE). However, this method performs poorly when the observed viability does not fit the equation well, as frequently happens in qHTS. More capable methods must be developed for qHTS where large data variations are unavoidable. In this study, we applied an isotonic regression (IR) method and compared its performance with HE under multiple data conditions. When dose-response data were suitable to draw HE curves with upper and lower asymptotes and experimental random errors were small, HE was better than IR, but when random errors were big, there was no difference between HE and IR. However, when the drawn curves did not have two asymptotes, IR showed better performance (p < 0.05, exact paired Wilcoxon test) with higher specificity (65% in HE vs. 96% in IR). In summary, IR performed similarly to HE when dose-response data were optimal, whereas IR clearly performed better in suboptimal conditions. These findings indicate that IR would be useful in qHTS for comparing dose-response data.

14.
Nature ; 527(7578): 389-93, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26503038

ABSTRACT

DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions that trigger non-proteolytic ubiquitylation of adjacent chromatin areas to generate binding sites for DNA repair factors. This depends on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 (refs 1-6), and UBC13 (also known as UBE2N), an E2 ubiquitin-conjugating enzyme that specifically generates K63-linked ubiquitin chains. Whereas RNF168 is known to catalyse ubiquitylation of H2A-type histones, leading to the recruitment of repair factors such as 53BP1 (refs 8-10), the critical substrates of RNF8 and K63-linked ubiquitylation remain elusive. Here we elucidate how RNF8 and UBC13 promote recruitment of RNF168 and downstream factors to DSB sites in human cells. We establish that UBC13-dependent K63-linked ubiquitylation at DSB sites is predominantly mediated by RNF8 but not RNF168, and that H1-type linker histones, but not core histones, represent major chromatin-associated targets of this modification. The RNF168 module (UDM1) recognizing RNF8-generated ubiquitylations is a high-affinity reader of K63-ubiquitylated H1, mechanistically explaining the essential roles of RNF8 and UBC13 in recruiting RNF168 to DSBs. Consistently, reduced expression or chromatin association of linker histones impair accumulation of K63-linked ubiquitin conjugates and repair factors at DSB-flanking chromatin. These results identify histone H1 as a key target of RNF8-UBC13 in DSB signalling and expand the concept of the histone code by showing that posttranslational modifications of linker histones can serve as important marks for recognition by factors involved in genome stability maintenance, and possibly beyond.


Subject(s)
DNA Damage , Histones/metabolism , Signal Transduction , Ubiquitin/metabolism , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/metabolism , Histones/chemistry , Humans , Lysine/metabolism , Protein Structure, Tertiary , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
15.
Nucleic Acids Res ; 43(3): 1671-83, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25628356

ABSTRACT

The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases.


Subject(s)
DNA Damage , DNA Polymerase III/metabolism , DNA Repair , Animals , Base Sequence , Cell Line , Chickens , DNA Polymerase III/chemistry , DNA Primers , DNA-Directed DNA Polymerase/metabolism , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , S Phase
16.
Genes Cells ; 19(10): 743-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25205350

ABSTRACT

RING finger protein 4 (RNF4) represents a subclass of ubiquitin ligases that target proteins modified by the small ubiquitin-like modifier (SUMO) for ubiquitin-mediated degradation. We disrupted the RNF4 gene in chicken DT40 cells and found that the resulting RNF4(-/-) cells gradually lost proliferation capability. Strikingly, this compromised proliferation was associated with an unprecedented cellular effect: the gradual decrease in the number of intact chromosomes. In the 6 weeks after gene targeting, there was a 25% reduction in the DNA content of the RNF4(-/-) cells. Regarding trisomic chromosome 2, 60% of the RNF4(-/-) cells lost one homologue, suggesting that DNA loss was mediated by whole chromosome loss. To determine the cause of this chromosome loss, we examined cell-cycle checkpoint pathways. RNF4(-/-) cells showed a partial defect in the spindle assembly checkpoint, premature dissociation of sister chromatids, and a marked increase in the number of lagging chromosomes at anaphase. Thus, combined defects in SAC and sister chromatid cohesion may result in increased lagging chromosomes, leading to chromosome loss without accompanying chromosome gain in RNF4(-/-) cells. We therefore propose that RNF4 plays a novel role in preventing the loss of intact chromosomes and ensures the maintenance of chromosome integrity.


Subject(s)
Chromosome Aberrations , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Anaphase , Animals , Cell Line , Cell Proliferation , Cell Survival/genetics , Chickens , Chromosome Segregation , DNA Damage , DNA Replication , M Phase Cell Cycle Checkpoints , Mutation , Ubiquitin-Protein Ligases/genetics
17.
Genes Cancer ; 5(7-8): 285-92, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25221646

ABSTRACT

Piperlongumine is a naturally-occurring small molecule with various biological activities. Recent studies demonstrate that piperlongumine selectively kills various types of transformed cells with minimal toxicity to non-transformed cells by inducing a high level of reactive oxygen species (ROS). ROS generates various types of DNA lesions, including base modifications and single strand breaks. In order to examine the contribution of ROS-induced DNA damage to the cytotoxicity by piperlongumine, various DNA repair-deficient chicken DT40 cell-lines with a single DNA repair gene deletion were tested for cellular sensitivity to piperlongumine. The results showed that cell lines defective in homologous recombination (HR) display hyper-sensitivity to piperlongumine, while other cell lines with a deficiency in non-homologous end joining (NHEJ), base excision repair (BER), nucleotide excision repair (NER), Fanconi anemia (FA) pathway, or translesion DNA synthesis (TLS) polymerases, show no sensitivity to piperlongumine. The results strongly implicate that double strand breaks (DSBs) generated by piperlongumine are major cytotoxic DNA lesions. Furthermore, a deletion of 53BP1 or Ku70 in the BRCA1-deficient cell line restored cellular resistance to piperlongumine. This strongly supports the idea that piperlongumine induces DSB- mediated cell death. Interestingly, piperlongumine makes the wild type DT40 cell line hypersensitive to a PARP-inhibitor, Olaparib. The results implicate that piperlongumine inhibits HR. Further analysis with cell-based HR assay and the kinetic study of Rad51 foci formation confirmed that piperlongumine suppresses HR activity. Altogether, we revealed novel mechanisms of piperlongumine-induced cytotoxicity.

18.
Cancer Res ; 73(14): 4362-71, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23576554

ABSTRACT

DNA double-strand breaks (DSB) occur frequently during replication in sister chromatids and are dramatically increased when cells are exposed to chemotherapeutic agents including camptothecin. Such DSBs are efficiently repaired specifically by homologous recombination (HR) with the intact sister chromatid. HR, therefore, plays pivotal roles in cellular proliferation and cellular tolerance to camptothecin. Mammalian cells carry several structure-specific endonucleases, such as Xpf-Ercc1 and Mus81-Eme1, in which Xpf and Mus81 are the essential subunits for enzymatic activity. Here, we show the functional overlap between Xpf and Mus81 by conditionally inactivating Xpf in the chicken DT40 cell line, which has no Mus81 ortholog. Although mammalian cells deficient in either Xpf or Mus81 are viable, Xpf inactivation in DT40 cells was lethal, resulting in a marked increase in the number of spontaneous chromosome breaks. Similarly, inactivation of both Xpf and Mus81 in human HeLa cells and murine embryonic stem cells caused numerous spontaneous chromosome breaks. Furthermore, the phenotype of Xpf-deficient DT40 cells was reversed by ectopic expression of human Mus81-Eme1 or human Xpf-Ercc1 heterodimers. These observations indicate the functional overlap of Xpf-Ercc1 and Mus81-Eme1 in the maintenance of genomic DNA. Both Mus81-Eme1 and Xpf-Ercc1 contribute to the completion of HR, as evidenced by the data that the expression of Mus81-Eme1 or Xpf-Ercc1 diminished the number of camptothecin-induced chromosome breaks in Xpf-deficient DT40 cells, and to preventing early steps in HR by deleting XRCC3 suppressed the nonviability of Xpf-deficient DT40 cells. In summary, Xpf and Mus81 have a substantially overlapping function in completion of HR.


Subject(s)
DNA Repair , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Homologous Recombination , Animals , Cell Death/genetics , Cell Line, Tumor , Chickens , Chromosome Aberrations , DNA Breaks, Double-Stranded , HeLa Cells , Humans , Mice
19.
Genes Cells ; 15(12): 1228-39, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21070511

ABSTRACT

DNA polymerase δ (Polδ) carries out DNA replication with extremely high accuracy. This great fidelity primarily depends on the efficient exclusion of incorrect base pairs from the active site of the polymerase domain. In addition, the 3'-5' exonuclease activity of Polδ further enhances its accuracy by eliminating misincorporated nucleotides. It is believed that these enzymatic properties also inhibit Polδ from inserting nucleotides opposite damaged templates. To test this widely accepted idea, we examined in vitro DNA synthesis by human Polδ enzymes proficient and deficient in the exonuclease activity. We chose the UV-induced lesions cyclobutyl pyrimidine dimer (CPD) and 6-4 pyrimidone photoproduct (6-4 PP) as damaged templates. 6-4 PP represents the most formidable challenge to DNA replication, and no single eukaryotic DNA polymerase has been shown to bypass 6-4 PP in vitro. Unexpectedly, we found that Polδ can perform DNA synthesis across both 6-4 PP and CPD even with a physiological concentration of deoxyribonucleotide triphosphates (dNTPs). DNA synthesis across 6-4 PP was often accompanied by a nucleotide deletion and was highly mutagenic. This unexpected enzymatic property of Polδ in the bypass of UV photoproducts challenges the received notion that the accuracy of Polδ prevents bypassing damaged templates.


Subject(s)
DNA Polymerase III/metabolism , DNA Replication , Pyrimidine Dimers/metabolism , Pyrimidine Dimers/radiation effects , Ultraviolet Rays , Humans , Photochemical Processes/radiation effects , Pyrimidine Dimers/genetics , Templates, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL