Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3170, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576826

ABSTRACT

Understanding the driving mechanisms of the interannual variability (IAV) of the net land carbon balance (Snet) is important to predict future climate-carbon cycle feedbacks. Past studies showed that the IAV of Snet was correlated with tropical climate variation and controlled by semiarid vegetation. But today's land ecosystems are also under extensive human land use and management. Here, we report a previously hidden role of land use in driving the IAV of Snet by using an improved biosphere model. We found that managed land accounted for 30-45% of the IAV of Snet over 1959-2015, while the contribution of intact land is reduced by more than half compared with previous assessments of the global carbon budget. Given the importance of land use in modulating future land climate-carbon cycle feedbacks, climate mitigation efforts should strive to reduce land-use emissions and enhance the climate resilience of carbon sinks over managed land.

2.
Glob Chang Biol ; 24(1): 350-359, 2018 01.
Article in English | MEDLINE | ID: mdl-28833909

ABSTRACT

Forest growth provides negative emissions of carbon that could help keep the earth's surface temperature from exceeding 2°C, but the global potential is uncertain. Here we use land-use information from the FAO and a bookkeeping model to calculate the potential negative emissions that would result from allowing secondary forests to recover. We find the current gross carbon sink in forests recovering from harvests and abandoned agriculture to be -4.4 PgC/year, globally. The sink represents the potential for negative emissions if positive emissions from deforestation and wood harvest were eliminated. However, the sink is largely offset by emissions from wood products built up over the last century. Accounting for these committed emissions, we estimate that stopping deforestation and allowing secondary forests to grow would yield cumulative negative emissions between 2016 and 2100 of about 120 PgC, globally. Extending the lifetimes of wood products could potentially remove another 10 PgC from the atmosphere, for a total of approximately 130 PgC, or about 13 years of fossil fuel use at today's rate. As an upper limit, the estimate is conservative. It is based largely on past and current practices. But if greater negative emissions are to be realized, they will require an expansion of forest area, greater efficiencies in converting harvested wood to long-lasting products and sources of energy, and novel approaches for sequestering carbon in soils. That is, they will require current management practices to change.


Subject(s)
Conservation of Natural Resources , Forests , Agriculture , Atmosphere , Carbon/metabolism , Carbon Sequestration , Climate Change , Conservation of Energy Resources , Forestry , Time Factors , Wood/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...