Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Nat Med ; 26(1): 118-130, 2020 01.
Article in English | MEDLINE | ID: mdl-31873312

ABSTRACT

Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Dependovirus/metabolism , Gene Silencing , Gene Transfer Techniques , Motor Neurons/pathology , Nerve Degeneration/therapy , Pia Mater/pathology , Spinal Cord/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Atrophy , Disease Progression , Evoked Potentials, Motor , Female , Gene Expression Regulation , Humans , Inflammation/pathology , Interneurons/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Muscle Development , Nerve Degeneration/genetics , Nerve Degeneration/physiopathology , Pia Mater/physiopathology , Primates , Protein Folding , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/administration & dosage , Spinal Cord/diagnostic imaging , Spinal Cord/physiopathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Swine
3.
PLoS One ; 10(12): e0144642, 2015.
Article in English | MEDLINE | ID: mdl-26713446

ABSTRACT

The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the pathophysiology of chronic spinal injury-induced spasticity. In addition a consistent anti-spastic effect measured after treatment with clinically effective anti-spastic agents indicate that this model can effectively be used in screening new anti-spasticity compounds or procedures aimed at modulating chronic spinal trauma-associated muscle spasticity.


Subject(s)
Muscle Spasticity/physiopathology , Spinal Cord Injuries/physiopathology , Animals , Disease Models, Animal , Electromyography , Female , Hindlimb/physiopathology , Lumbosacral Region/pathology , Lumbosacral Region/physiopathology , Male , Muscle Spasticity/etiology , Muscle Spasticity/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Rats, Sprague-Dawley , Reflex, Abnormal , Spinal Cord/pathology , Spinal Cord/physiopathology , Spinal Cord Injuries/complications , Spinal Cord Injuries/pathology , Thoracic Vertebrae/pathology , Touch Perception
SELECTION OF CITATIONS
SEARCH DETAIL