Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(41): 20736-20742, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548413

ABSTRACT

Astrocytes express the 3-phosphoglycerate dehydrogenase (Phgdh) enzyme required for the synthesis of l-serine from glucose. Astrocytic l-serine was proposed to regulate NMDAR activity by shuttling to neurons to sustain d-serine production, but this hypothesis remains untested. We now report that inhibition of astrocytic Phgdh suppressed the de novo synthesis of l-and d-serine and reduced the NMDAR synaptic potentials and long-term potentiation (LTP) at the Schaffer collaterals-CA1 synapse. Likewise, enzymatic removal of extracellular l-serine impaired LTP, supporting an l-serine shuttle mechanism between glia and neurons in generating the NMDAR coagonist d-serine. Moreover, deletion of serine racemase (SR) in glutamatergic neurons abrogated d-serine synthesis to the same extent as Phgdh inhibition, suggesting that neurons are the predominant source of the newly synthesized d-serine. We also found that the synaptic NMDAR activation in adult SR-knockout (KO) mice requires Phgdh-derived glycine, despite the sharp decline in the postnatal glycine levels as a result of the emergence of the glycine cleavage system. Unexpectedly, we also discovered that glycine regulates d-serine metabolism by a dual mechanism. The first consists of tonic inhibition of SR by intracellular glycine observed in vitro, primary cultures, and in vivo microdialysis. The second involves a transient glycine-induce d-serine release through the Asc-1 transporter, an effect abolished in Asc-1 KO mice and diminished by deleting SR in glutamatergic neurons. Our observations suggest that glycine is a multifaceted regulator of d-serine metabolism and implicate both d-serine and glycine in mediating NMDAR synaptic activation at the mature hippocampus through a Phgdh-dependent shuttle mechanism.


Subject(s)
Astrocytes/metabolism , Glycine/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Racemases and Epimerases/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Serine/metabolism , Synapses/physiology , Animals , Astrocytes/cytology , Hippocampus/cytology , Hippocampus/metabolism , Long-Term Potentiation , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Neurons/metabolism , Phosphoglycerate Dehydrogenase/genetics , Receptors, N-Methyl-D-Aspartate/genetics
2.
Cereb Cortex ; 27(2): 1573-1587, 2017 02 01.
Article in English | MEDLINE | ID: mdl-26796213

ABSTRACT

d-Serine is a co-agonist of NMDA receptors (NMDARs) whose activity is potentially regulated by Asc-1 (SLC7A10), a transporter that displays high affinity for d-serine and glycine. Asc-1 operates as a facilitative transporter and as an antiporter, though the preferred direction of d-serine transport is uncertain. We developed a selective Asc-1 blocker, Lu AE00527, that blocks d-serine release mediated by all the transport modes of Asc-1 in primary cultures and neocortical slices. Furthermore, d-serine release is reduced in slices from Asc-1 knockout (KO) mice, indicating that d-serine efflux is the preferred direction of Asc-1. The selectivity of Lu AE00527 is assured by the lack of effect on slices from Asc-1-KO mice, and the lack of interaction with the co-agonist site of NMDARs. Moreover, in vivo injection of Lu AE00527 in P-glycoprotein-deficient mice recapitulates a hyperekplexia-like phenotype similar to that in Asc-1-KO mice. In slices, Lu AE00527 decreases the long-term potentiation at the Schaffer collateral-CA1 synapses, but does not affect the long-term depression. Lu AE00527 blocks NMDAR synaptic potentials when typical Asc-1 extracellular substrates are present, but it does not affect AMPAR transmission. Our data demonstrate that Asc-1 mediates tonic co-agonist release, which is required for optimal NMDAR activation and synaptic plasticity.


Subject(s)
Amino Acid Transport System y+/genetics , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Prosencephalon/physiology , Synapses/physiology , Animals , Excitatory Postsynaptic Potentials/physiology , Humans , Mice, Knockout , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/physiology
3.
EMBO Rep ; 16(5): 590-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25755256

ABSTRACT

Asc-1 (SLC7A10) is an amino acid transporter whose deletion causes neurological abnormalities and early postnatal death in mice. Using metabolomics and behavioral and electrophysiological methods, we demonstrate that Asc-1 knockout mice display a marked decrease in glycine levels in the brain and spinal cord along with impairment of glycinergic inhibitory transmission, and a hyperekplexia-like phenotype that is rescued by replenishing brain glycine. Asc-1 works as a glycine and L-serine transporter, and its transport activity is required for the subsequent conversion of L-serine into glycine in vivo. Asc-1 is a novel regulator of glycine metabolism and a candidate for hyperekplexia disorders.


Subject(s)
Amino Acid Transport System y+/metabolism , Brain/metabolism , Glycine/metabolism , Synaptic Transmission , Amino Acid Transport System y+/genetics , Animals , Biological Transport , Genotype , Hypoglossal Nerve/cytology , Metabolome , Metabolomics/methods , Mice , Mice, Knockout , Mutation , Neurons/metabolism , Phenotype , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Serine/metabolism , Synaptic Transmission/genetics
SELECTION OF CITATIONS
SEARCH DETAIL