Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1284529, 2023.
Article in English | MEDLINE | ID: mdl-38162303

ABSTRACT

Outside the protection of Earth's magnetic field, organisms are constantly exposed to space radiation consisting of energetic protons and other heavier charged particles. With the goal of crewed Mars exploration, the production of fresh food during long duration space missions is critical for meeting astronauts' nutritional and psychological needs. However, the biological effects of space radiation on plants have not been sufficiently investigated and characterized. To that end, 10-day-old Arabidopsis seedlings were exposed to simulated Galactic Cosmic Rays (GCR) and assessed for transcriptomic changes. The simulated GCR irradiation was carried out in the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Lab (BNL). The exposures were conducted acutely for two dose points at 40 cGy or 80 cGy, with sequential delivery of proton, helium, oxygen, silicon, and iron ions. Control and irradiated seedlings were then harvested and preserved in RNAlater at 3 hrs post irradiation. Total RNA was isolated for transcriptomic analyses using RNAseq. The data revealed that the transcriptomic responses were dose-dependent, with significant upregulation of DNA repair pathways and downregulation of glucosinolate biosynthetic pathways. Glucosinolates are important for plant pathogen defense and for the taste of a plant, which are both relevant to growing plants for spaceflight. These findings fill in knowledge gaps of how plants respond to radiation in beyond-Earth environments.

2.
Life (Basel) ; 12(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35207432

ABSTRACT

One of the major concerns for long-term exploration missions beyond the Earth's magnetosphere is consequences from exposures to solar particle event (SPE) protons and galactic cosmic rays (GCR). For long-term crewed Lunar and Mars explorations, the production of fresh food in space will provide both nutritional supplements and psychological benefits to the astronauts. However, the effects of space radiation on plants and plant propagules have not been sufficiently investigated and characterized. In this study, we evaluated the effect of two different compositions of charged particles-simulated GCR, and simulated SPE protons on dry and hydrated seeds of the model plant Arabidopsis thaliana and the crop plant Mizuna mustard [Brassica rapa var. japonica]. Exposures to charged particles, simulated GCRs (up to 80 cGy) or SPEs (up to 200 cGy), were performed either acutely or at a low dose rate using the NASA Space Radiation Laboratory (NSRL) facility at Brookhaven National Lab (BNL). Control and irradiated seeds were planted in a solid phytogel and grown in a controlled environment. Five to seven days after planting, morphological parameters were measured to evaluate radiation-induced damage in the seedlings. After exposure to single types of charged particles, as well as to simulated GCR, the hydrated Arabidopsis seeds showed dose- and quality-dependent responses, with heavier ions causing more severe defects. Seeds exposed to simulated GCR (dry seeds) and SPE (hydrated seeds) had significant, although much less damage than seeds exposed to heavier and higher linear energy transfer (LET) particles. In general, the extent of damage depends on the seed type.

3.
Methods Mol Biol ; 2368: 281-299, 2022.
Article in English | MEDLINE | ID: mdl-34647262

ABSTRACT

Since opportunities to conduct experiments in space are scarce, various microgravity simulators and analogs have been widely used in space biology ground studies. Even though microgravity simulators do not produce all of the biological effects observed in the true microgravity environment, they provide alternative test platforms that are effective, affordable, and readily available to facilitate microgravity research. The Microgravity Simulation Support Facility (MSSF) at the National Aeronautics and Space Administration (NASA) John F. Kennedy Space Center (KSC) has been established for conducting short duration experiments, typically less than 1 month, utilizing a variety of microgravity simulation devices for research at different gravity levels. The simulators include, but are not limited to, 2D Clinostats, 3D Clinostats, Random Positioning Machines, and Rotating Wall Vessels. In this chapter, we will discuss current MSSF capabilities, development concepts, and the physical characteristics of these microgravity simulators.


Subject(s)
Space Flight , Weightlessness Simulation , Weightlessness , United States , United States National Aeronautics and Space Administration
4.
Int J Mol Sci ; 21(18)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942630

ABSTRACT

Microgravity is known to affect the organization of the cytoskeleton, cell and nuclear morphology and to elicit differential expression of genes associated with the cytoskeleton, focal adhesions and the extracellular matrix. Although the nucleus is mechanically connected to the cytoskeleton through the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, the role of this group of proteins in these responses to microgravity has yet to be defined. In our study, we used a simulated microgravity device, a 3-D clinostat (Gravite), to investigate whether the LINC complex mediates cellular responses to the simulated microgravity environment. We show that nuclear shape and differential gene expression are both responsive to simulated microgravity in a LINC-dependent manner and that this response changes with the duration of exposure to simulated microgravity. These LINC-dependent genes likely represent elements normally regulated by the mechanical forces imposed by gravity on Earth.


Subject(s)
Cell Nucleus/physiology , Cytoskeleton/physiology , Gene Expression/physiology , Nuclear Matrix/physiology , Cell Line , Extracellular Matrix/physiology , Focal Adhesions/physiology , Humans , Weightlessness , Weightlessness Simulation/methods
5.
Int J Mol Sci ; 20(10)2019 May 15.
Article in English | MEDLINE | ID: mdl-31096581

ABSTRACT

The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10-4 to 10-5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4-19 s microgravity, and adapted subsequently until 126-151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages.


Subject(s)
Cytoskeleton/metabolism , Macrophages/cytology , Macrophages/metabolism , Weightlessness , Actin Cytoskeleton , Actins/metabolism , Cell Line , Cell Nucleus , Cytoplasm , Humans , Lysosomes , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Monocytes/cytology , Space Flight
6.
Int J Mol Sci ; 20(8)2019 Apr 25.
Article in English | MEDLINE | ID: mdl-31027161

ABSTRACT

Here we report the successful first operation of FLUMIAS-DEA, a miniaturized high-resolution 3D fluorescence microscope on the International Space Station (ISS) by imaging two scientific samples in a temperature-constant system, one sample with fixed cells and one sample with living human cells. The FLUMIAS-DEA microscope combines features of a high-resolution 3D fluorescence microscope based on structured illumination microscope (SIM) technology with hardware designs to meet the requirements of a space instrument. We successfully demonstrated that the FLUMIAS technology was able to acquire, transmit, and store high-resolution 3D fluorescence images from fixed and living cells, allowing quantitative and dynamic analysis of subcellular structures, e.g., the cytoskeleton. The capability of real-time analysis methods on ISS will dramatically extend our knowledge about the dynamics of cellular reactions and adaptations to the space environment, which is not only an option, but a requirement of evidence-based medical risk assessment, monitoring and countermeasure development for exploration class missions.


Subject(s)
Imaging, Three-Dimensional , Macrophages/cytology , Microscopy/methods , Space Flight , Humans , Microscopy/instrumentation , Staining and Labeling , Weightlessness
7.
Methods Mol Biol ; 1840: 81-90, 2018.
Article in English | MEDLINE | ID: mdl-30141040

ABSTRACT

We describe a recently reported method for directly applying a known, nanonewton-scale force to the nucleus in a living, intact cell. First, a suction seal is applied on the nuclear surface using a micropipette. Then, the micropipette is translated away from the nucleus. The nucleus deforms and translates with the moving micropipette and then eventually detaches from the micropipette and recovers (roughly) its original shape and position. At the point of detachment, the resisting force (from the deformed nucleus and connected cytoskeleton) balances the suction force. Because the suction force is precisely known and reproducibly applied, this method therefore allows comparisons of nuclear response across disruptions to the cytoskeleton, nucleus, or cell. This method is useful for quantifying nuclear elastic properties in its native, integrated environment.


Subject(s)
Biomechanical Phenomena , Cell Nucleus , Animals , Biological Assay , Mice
8.
Int J Mol Sci ; 18(6)2017 May 31.
Article in English | MEDLINE | ID: mdl-28561779

ABSTRACT

In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.


Subject(s)
Health Status , NF-kappa B/genetics , Signal Transduction/genetics , Space Flight/methods , Transcriptome , Weightlessness Simulation/methods , Animals , Gene Regulatory Networks , Humans , NF-kappa B/metabolism
9.
Sci Rep ; 6: 19689, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26795751

ABSTRACT

Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.


Subject(s)
Cell Nucleus Shape , Cell Nucleus/metabolism , Cell Shape , Epithelial Cells/cytology , Breast/cytology , Cadherins/metabolism , Cell Adhesion , Cell Movement , Cell Separation , Female , Humans
10.
Methods ; 94: 27-32, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26115785

ABSTRACT

Cytoskeletal forces are transmitted to the nucleus to position and shape it. Linkages mediated by the LINC (linker of nucleoskeleton and cytoskeleton) complex transfer these forces to the nuclear envelope. Nuclear position and shape can be thought to be determined by a balance of cytoskeletal forces generated by microtubule motors that shear the nuclear surface, actomyosin forces that can pull, push and shear the nucleus, and intermediate filaments that may passively resist nuclear decentering and deformation. Parsing contributions of these different forces to nuclear mechanics is a very challenging task. Here we review new approaches that can be used in living cells to probe and understand the nuclear force balance.


Subject(s)
Cytoskeleton/physiology , Cell Adhesion , Cell Movement , Cell Nucleus/physiology , Humans , Microscopy, Atomic Force
11.
Nucleus ; 6(5): 360-5, 2015.
Article in English | MEDLINE | ID: mdl-26338356

ABSTRACT

Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity.


Subject(s)
Biophysical Phenomena , Cell Nucleus/metabolism , Animals , Humans , Nuclear Proteins/metabolism , Time Factors
12.
Biophys J ; 109(4): 670-86, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26287620

ABSTRACT

The nucleus has a smooth, regular appearance in normal cells, and its shape is greatly altered in human pathologies. Yet, how the cell establishes nuclear shape is not well understood. We imaged the dynamics of nuclear shaping in NIH3T3 fibroblasts. Nuclei translated toward the substratum and began flattening during the early stages of cell spreading. Initially, nuclear height and width correlated with the degree of cell spreading, but over time, reached steady-state values even as the cell continued to spread. Actomyosin activity, actomyosin bundles, microtubules, and intermediate filaments, as well as the LINC complex, were all dispensable for nuclear flattening as long as the cell could spread. Inhibition of actin polymerization as well as myosin light chain kinase with the drug ML7 limited both the initial spreading of cells and flattening of nuclei, and for well-spread cells, inhibition of myosin-II ATPase with the drug blebbistatin decreased cell spreading with associated nuclear rounding. Together, these results show that cell spreading is necessary and sufficient to drive nuclear flattening under a wide range of conditions, including in the presence or absence of myosin activity. To explain this observation, we propose a computational model for nuclear and cell mechanics that shows how frictional transmission of stress from the moving cell boundaries to the nuclear surface shapes the nucleus during early cell spreading. Our results point to a surprisingly simple mechanical system in cells for establishing nuclear shapes.


Subject(s)
Cell Movement/physiology , Cell Nucleus Shape/physiology , Cell Nucleus/physiology , Fibroblasts/cytology , Fibroblasts/physiology , 3T3 Cells , Actins/metabolism , Actomyosin/metabolism , Animals , Azepines/pharmacology , Cell Movement/drug effects , Cell Nucleus/drug effects , Cell Nucleus Shape/drug effects , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Mice , Microtubules/metabolism , Models, Biological , Myosin-Light-Chain Kinase/antagonists & inhibitors , Myosin-Light-Chain Kinase/metabolism , Myosins/antagonists & inhibitors , Myosins/metabolism , Naphthalenes/pharmacology
13.
Proc Natl Acad Sci U S A ; 112(18): 5720-5, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25901323

ABSTRACT

How cells maintain nuclear shape and position against various intracellular and extracellular forces is not well understood, although defects in nuclear mechanical homeostasis are associated with a variety of human diseases. We estimated the force required to displace and deform the nucleus in adherent living cells with a technique to locally pull the nuclear surface. A minimum pulling force of a few nanonewtons--far greater than typical intracellular motor forces--was required to significantly displace and deform the nucleus. Upon force removal, the original shape and position were restored quickly within a few seconds. This stiff, elastic response required the presence of vimentin, lamin A/C, and SUN (Sad1p, UNC-84)-domain protein linkages, but not F-actin or microtubules. Although F-actin and microtubules are known to exert mechanical forces on the nuclear surface through molecular motor activity, we conclude that the intermediate filament networks maintain nuclear mechanical homeostasis against localized forces.


Subject(s)
Cell Nucleus/metabolism , Gene Expression Regulation , Homeostasis , Actins/chemistry , Actins/metabolism , Animals , Cell Adhesion , Cell Line, Tumor , Cell Membrane/metabolism , Cell Survival , Cytoskeleton/metabolism , Elasticity , Fibroblasts/metabolism , Green Fluorescent Proteins/metabolism , Humans , Mice , Micromanipulation , Microscopy, Fluorescence , Microtubules/metabolism , NIH 3T3 Cells , Nuclear Envelope/metabolism , RNA, Small Interfering/metabolism
14.
Cell Mol Bioeng ; 6(2): 120-129, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-24039637

ABSTRACT

Despite their rigidity, microtubules in living cells bend significantly during polymerization resulting in greater curvature than can be explained by thermal forces alone. However, the source of the non-thermal forces that bend growing microtubules remains obscure. We analyzed the motion of microtubule tips in NIH-3T3 fibroblasts expressing EGFP-EB1, a fluorescent +TIP protein that specifically binds to the growing ends of microtubules. We found that dynein inhibition significantly reduced the deviation of the growing tip from its initial trajectory. Inhibiting myosin modestly reduced tip fluctuations, while simultaneous myosin and dynein inhibition caused no further decrease in fluctuations compared to dynein inhibition alone. Our results can be interpreted with a model in which dynein linkages play a key role in generating and transmitting fluctuating forces that bend growing microtubules.

SELECTION OF CITATIONS
SEARCH DETAIL
...