Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979882

ABSTRACT

Amidst burgeoning interest, atomically precise copper nanoclusters (Cu NCs) have emerged as a remarkable class of nanomaterials distinguished by their unparalleled reactivity. Nonetheless, the synthesis of hydride-free Cu NCs and their role as stable catalysts remain infrequently explored. Here, we introduce a facile synthetic approach to fabricate a hydride-free [Cu7(SC5H9)7(PPh3)3] (Cu7) NC and delineate its photophysical properties intertwined with their structural configuration. Moreover, the utilization of its photophysical properties in a photoinduced C-C coupling reaction demonstrates remarkable specificity toward cross-coupling products with high yields. The combined experimental and theoretical investigation reveals a nonradical mechanistic pathway distinct from its counterparts, offering promising prospects for designing hydride-free Cu NC catalysts in the future and unveiling the selectivity of the hydride-free [Cu7(SC5H9)7(PPh3)3] NC in photoinduced Sonogashira C-C coupling through a polar reaction pathway.

2.
Chem Rec ; 24(5): e202400052, 2024 May.
Article in English | MEDLINE | ID: mdl-38775236

ABSTRACT

The exploration of individual nanoclusters is rapidly advancing, despite stability concerns. To address this challenge, the assembly of cluster nodes through linker molecules has been successfully implemented. However, the linking of the cluster nodes itself introduces a multitude of possibilities, especially when additional factors come into play. While this method proves effective in enhancing material stability, the specific reasons behind its success remain elusive. In our laboratory, we have undertaken extensive studies on Ag cluster-assembled materials. So, here our goal is to establish a model system that allows for the discernment of various factors, eliminating unnecessary complexities during the linking approach. So, we hope that the systematic discourse presented in here will contribute significantly to future endeavors, helping to set clear priorities, and provide solutions to concerns that arise when working with a model system.

3.
J Am Chem Soc ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738855

ABSTRACT

Triplet-triplet annihilation photon upconversion (TTA-UC) is attracting a great deal of attention as a viable approach to exploit unutilized wavelengths of light in solar-driven devices. Recently, ligand-protected metal nanoclusters have emerged as a compelling platform for serving as triplet sensitizers for TTA-UC. In this study, we developed an atomically precise, triplet-mediator ligand (TL)-protected metal nanocluster, Au2Cu6(S-Adm)6[P(DPA)3]2 (Au2Cu6DPA; S-Adm = 1-adamanthanethiolate, DPA = 9,10-diphenylanthracene). In Au2Cu6DPA, the excitation of the Au2Cu6 core rapidly generates a metal-to-ligand charge transfer state, followed by the formation of the long-lived triplet state (approximately 150 µs) at a DPA site in the TL. By combining Au2Cu6DPA with a DPA annihilator, we achieved a red-to-blue upconversion quantum yield (ΦUCg) of 20.7 ± 0.4% (50% max.) with a low threshold excitation intensity of 36 mW cm-2 at 640 nm. This quantum yield almost reaches the maximum limit achievable using a DPA annihilator and establishes a record-setting value, outperforming previously reported nanocrystal and nanocluster sensitizers. Furthermore, strong upconversion emission based on a pseudo-first-order TTA process was observed under 1 sun illumination, indicating that the Au2Cu6DPA sensitizer holds promise for applications in solar-energy-based systems.

4.
Dalton Trans ; 53(23): 9657-9663, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38624154

ABSTRACT

The synthesis of copper (Cu) nanoclusters (NCs) has experienced significant advancements in recent years. Despite the exploration of metal NCs dating back almost two decades, challenges specific to Cu NC synthesis arise from the variable oxidation states and heightened reactivity of intermediate Cu complexes, distinguishing it from its analogous counterparts. In this study, we present a comprehensive overview of this newly evolving research domain, focusing on the synthetic aspects. We delve into various factors influencing the synthesis of Cu NCs, with specific emphasis on the role of reducing agents. The impact of the reducing agent is particularly pivotal in this synthetic process, ultimately influencing the formation of model M(0)-containing NCs, which are less readily accessible in the context of Cu NCs. We anticipate that this frontier article will pave the way for accelerated research in the field of Cu NCs. By aiding in the selection of specific reaction conditions and reducing agents, we believe that this work will contribute to a faster-paced exploration of Cu NCs, further advancing our understanding and applications in this exciting area of nanomaterial research.

5.
Nanoscale ; 16(20): 9642-9658, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38644768

ABSTRACT

Silver Cluster-Assembled Materials (SCAMs) represent a new frontier of crystalline extended solids hallmarked by their customizable structures, commendable stabilities, and unique physical/chemical properties. Since their discovery in 2017, the diversity of organic linkers has endowed SCAMs with ingenious architectures and the application scenario has expanded beyond photoluminescence sensing to environmental sustainability and biomedical applications. It is critically important to chronicle these recent key advances and review the progress of SCAMs that can enable translating the material discoveries into real implementation. Herein, we provide a succinct overview of the trajectory of SCAM research, with crucial insights into atomic-level structural correlations with the phenomena at the nanoscale and discuss the gaps and opportunities that are still open in addition to charting a roadmap for future research directions.

6.
Mater Horiz ; 11(10): 2304-2322, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38587491

ABSTRACT

The phenomenon of photon upconversion (UC), generating high-energy photons from low-energy photons, has attracted significant attention. In particular, triplet-triplet annihilation-based UC (TTA-UC) has been achieved by combining the excitation states of two types of molecules, called the sensitizer and emitter (or annihilator). With TTA-UC, it is possible to convert weak, incoherent near-infrared (NIR) light, which constitutes half of the solar radiation intensity, into ultraviolet and visible light that are suitable for the operation of light-responsive functional materials or devices such as solar cells and photocatalysts. Research on TTA-UC is being conducted worldwide, often employing materials with high intersystem crossing rates, such as metal porphyrins, as sensitizers. This review summarizes recent research and trends in triplet energy transfer and TTA-UC for semiconductor nanoparticles or nanocrystals with diameters in the nanometer range, also known as quantum dots, and for ligand-protected metal nanoclusters, which have even smaller well-defined sub-nanostructures. Concerning nanoparticles, transmitter ligands have been applied on the surface of the nanoparticles to efficiently transfer triplet excitons formed inside the nanoparticles to emitters. Applications are expanding to solid-state UC devices that convert NIR light to visible light. Additionally, there is active research in the development of sensitizers using more cost-effective and environmentally friendly elements. Regarding metal nanoclusters, methods have been established for the evaluation of excited states, deepening the understanding of luminescent properties and excited relaxation processes.

7.
J Phys Chem Lett ; 15(5): 1539-1545, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38299566

ABSTRACT

Tiara-like metal nanoclusters (TNCs) have attracted a great deal of attention because of their high stability and easy synthesis under atmospheric conditions as well as their high activity in various catalytic reactions. Alloying is one of the methods that can be used to control the physicochemical properties of nanoclusters, but few studies have reported on alloy TNCs. In this study, we synthesized alloy TNCs [NixPt6-x(PET)12, where x = 1-5 and PET = 2-phenylethanethiolate] consisting of thiolate, nickel (Ni), and platinum (Pt). We further evaluated the stability, geometric structure, and electronic structure by high-performance liquid chromatography and density functional theory calculations. The results revealed that NixPt6-x(PET)12 has a distorted structure and is therefore less stable than single-metal TNCs.

8.
J Phys Chem Lett ; 15(4): 947-958, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38252029

ABSTRACT

Photoluminescence (PL) emission is an intriguing characteristic displayed by atomically precise d10 metal nanoclusters (NCs), renowned for their meticulous atomic arrangements, which have captivated the scientific community. Cu(I) NCs are a focal point in extensive research due to their abundance, cost-effectiveness, and unique luminescent attributes. Despite similar core sizes, their luminescent characteristics vary, influenced by multiple factors. Progress hinges on synthesizing new NCs and modifying existing ones, with postsynthetic alterations impacting emission properties. The rapid advancements in this field pose challenges in discerning essential points for excelling amidst competition with other d10 NCs. This Perspective explores the intricate origins of PL emission in Cu(I) NCs, providing a comprehensive review of their correlated structural architectures. Understanding the mechanistic origin of PL emission in each cluster is crucial for correlating diverse characteristics, contributing to a deeper comprehension from both fundamental and applied scientific perspectives.

9.
Small ; 20(20): e2307666, 2024 May.
Article in English | MEDLINE | ID: mdl-38279566

ABSTRACT

Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent-organic architectures but also helps to comprehend function from structural design point-of-view. Proceeding on this track, the first 3D COF, TUS-38, with the topology is constructed by reticulating a planar triangular 3-c node of D3h symmetry with a tetragonal prism 8-c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS-38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen-rich s-triazine rings with electron-deficient character and ─C â• N─ linkages composing the TUS-38 framework that benefit to the charge-transfer and hence dipole-dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS-38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g-1. Recyclability studies evidence that TUS-38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.

10.
Small ; 20(2): e2304210, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37626458

ABSTRACT

Due to their high designability, unique geometric and electronic structures, and surface coordination chemistry, atomically precise metal nanoclusters are an emerging class of functional nanomaterials at the forefront of materials research. However, the current research on metal nanoclusters is mainly fundamental, and their practical applications are still uncharted. The surface binding properties and redox activity of Au24 Pt(PET)18 (PET: phenylethanethiolate, SCH2 CH2 Ph) nanoclusters are herein harnessed as an high-efficiency electrocatalyst for the anchoring and rapid conversion of lithium polysulfides in lithium-sulfur batteries (LSBs). Au24 Pt(PET)18 @G composites are prepared by using the large specific surface area, high porosity, and conductive network of graphene (G) for the construction of battery separator that can inhibit polysulfide shuttle and accelerate electrochemical kinetics. Resultantly, the LSB using a Au24 Pt(PET)18 @G-based separator presents a high reversible specific capacity of 1535.4 mA h g-1 for the first cycle at 0.2 A g-1 and a rate capability of 887 mA h g-1 at 5 A g-1 . After 1000 cycles at 5 A g-1 , the capacity is 558.5 mA h g-1 . This study is a significant step toward the application of metal nanoclusters as optimal electrocatalysts for LSBs and other sustainable energy storage systems.

11.
Chemistry ; 30(6): e202303474, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38078517

ABSTRACT

The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.

12.
J Am Chem Soc ; 145(43): 23533-23540, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37862604

ABSTRACT

Electronic structures of anion-templated silver nanoclusters (Ag NCs) are not well understood compared to conventional, template-free Ag NCs. In this study, we synthesized three new anion-templated Ag NCs, namely [S@Ag17(S-4CBM)15(PPh3)5]0, [S@Ag18(S-4CBM)16(PPh3)8]0, and [Cl@Ag18(S-4CBM)16(PPh3)8][PPh4], where S-4CBM = 4-chlorobenzene methanethiolate, and single-crystal X-ray crystallography revealed that they have S@Ag6, S@Ag10, and Cl@Ag10 cores, respectively. Investigation of their electronic structures by optical spectroscopy and theoretical calculations elucidated the following unique features: (1) their electronic structures are different from those of template-free Ag NCs described by the superatomic concept; (2) optical absorption in the range of 550-400 nm for S2--templated Ag NCs is attributed to the charge transitions from S2--templated Ag-cage orbitals to the s-shaped orbital in the S2- moiety; (3) the Cl--templated Ag NCs can be viewed as [Cl@Ag18(S-4CBM)16(PPh3)8]0[PPh4]0 rather than the ion pair [Cl@Ag18(S-4CBM)16(PPh3)8]-[PPh4]+; and (4) singlet-coupled singly occupied orbitals are involved in the optical absorption of the Cl--templated Ag NC.

13.
Dalton Trans ; 52(42): 15152-15167, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37712891

ABSTRACT

Metal nanoclusters (NCs) with sizes of approximately 2 nm or less have different physical/chemical properties from those of the bulk metals owing to quantum size effects. Metal NCs, which can be size-controlled and heterometal doped at atomic accuracy, are expected to be the next generation of important materials, and new metal NCs are reported regularly. However, compared with conventional materials such as metal complexes and relatively large metal nanoparticles (>2 nm), these metal NCs are still underdeveloped in terms of evaluation and establishment of application methods. Electrochemical measurements are one of the most widely used methods for synthesis, application, and characterisation of metal NCs. This review summarizes the basic knowledge of the electrochemistry and experimental techniques, and provides examples of the reported electronic states of thiolate-protected gold NCs elucidated by electrochemical approaches. It is expected that this review will provide useful information for researchers starting to study metal NCs.

14.
Nanoscale ; 15(40): 16299-16306, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37718910

ABSTRACT

Silver cluster-assembled materials (SCAMs) have garnered significant interest as promising platforms for different functional explorations. Their atomically precise structures, intriguing chemical/physical properties, and remarkable luminescent capabilities make them highly appealing. However, the properties of these materials are primarily determined by their structural architecture, which is heavily influenced by the linker molecules used in their assembly. The choice of linker molecules plays a pivotal role in shaping the structural characteristics and ultimately determining the unique properties of SCAMs. To this end, the first SCAM with an intriguing (3,6)-connected kgd topology, [Ag12(StBu)6(CF3COO)6(TPBTC)6]n (termed TUS 3), TPBTC = benzene-1,3,5-tricarboxylic acid tris-pyridin-4-ylamide, has been synthesized by reticulating C6-symmetric Ag12 cluster cores with C3-symmetric tripodal pyridine linkers. Due to the structutural architecture of the linker molecule, TUS 3 posseses a luminescent porous framework structure where each two-dimensional (2D) layers are non-covalently linked with each other to form a three dimensional (3D) framework and ultimately offers uniaxial open channels. The compact mesoporous structural architecture not only gives the excellent surface area but also offers impressive stability of this material even in water medium. Taking advantage of these properties, TUS 3 shows brilliant catalytic activity in the reduction of hexacyanoferrate(III) using sodium borohydride in aqueous solutions.

15.
Nanoscale Horiz ; 8(11): 1509-1522, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37772632

ABSTRACT

The quest for cleaner pathways to the production of fuels and chemicals from non-fossil feedstock, efficient transformation of raw materials to value-added chemicals under mild conditions, and control over the activity and selectivity of chemical processes are driving the state-of-the-art approaches to the construction and precise chemical modification of sustainable nanocatalysts. As a burgeoning category of atomically precise noble metal nanoclusters, copper nanoclusters (Cu NCs) benefitting from their exclusive structural architecture, ingenious designability of active sites and high surface-to-volume ratio qualify as potential rationally-designed catalysts. In this Minireview, we present a detailed coverage of the optimal design strategies and controlled synthesis of Cu NC catalysts with a focus on tuning of active sites at the atomic level, the implications of cluster size, shape and structure, the ligands and heteroatom doping on catalytic activity, and reaction scope ranging from chemical catalysis to emerging photocatalysis and electrocatalysis.

16.
Chem Commun (Camb) ; 59(61): 9336-9339, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37404125

ABSTRACT

This article explores the challenges in synthesizing highly symmetric Cu(I)-thiolate nanoclusters and reports a nested Keplerian architecture of [Cu58H20(SPr)36(PPh3)8]2+ (Pr = CH2CH2CH3). The structure is made up of five concentric polyhedra of Cu(I) atoms, which create enough space to accommodate five ligand shells all within a range of 2 nm. This fascinating structural architecture is also linked to the unique photoluminescence properties of the nanoclusters.

17.
Nanoscale ; 15(29): 12227-12234, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37378425

ABSTRACT

Silver cluster-assembled materials (SCAMs) are emerging light-emitting materials with molecular-level structural designability and unique photophysical properties. Nevertheless, the widespread application scope of these materials is severely curtailed by their dissimilar structural architecture upon immersing in different solvent media. In this work, we report the designed synthesis of two unprecedented (4.6)-connected three-dimensional (3D) luminescent SCAMs, [Ag12(StBu)6(CF3COO)6(TPEPE)6]n (denoted as TUS 1), TPEPE = 1,1,2,2-tetrakis(4-(pyridin-4-ylethynyl)phenyl)ethene and [Ag12(StBu)6(CF3COO)6(TPVPE)6]n (denoted as TUS 2), TPVPE = 1,1,2,2-tetrakis(4-((E)-2-(pyridin-4-yl)vinyl)phenyl)ethene, composed of an Ag12 cluster core connected by quadridentate pyridine linkers. Attributed to their exceptional fluorescence properties with absolute quantum yield (QY) up to 9.7% and excellent chemical stability in a wide range of solvent polarity, a highly sensitive assay for detecting Fe3+ in aqueous medium is developed with promising detection limits of 0.05 and 0.86 nM L-1 for TUS 1 and TUS 2 respectively, comparable to the standard. Furthermore, the competency of these materials to detect Fe3+ in real water samples reveals their potential application in environmental monitoring and assessment.

18.
Commun Chem ; 6(1): 129, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37340116

ABSTRACT

Controlling the geometric structures of metal clusters through structural isomerization allows for tuning of their electronic state. In this study, we successfully synthesized butterfly-motif [PdAu8(PPh3)8]2+ (PdAu8-B, B means butterfly-motif) and [PtAu8(PPh3)8]2+ (PtAu8-B) by the structural isomerization from crown-motif [PdAu8(PPh3)8]2+ (PdAu8-C, C means crown-motif) and [PtAu8(PPh3)8]2+ (PtAu8-C), induced by association with anionic polyoxometalate, [Mo6O19]2- (Mo6) respectively, whereas their structural isomerization was suppressed by the use of [NO3]- and [PMo12O40]3- as counter anions. DR-UV-vis-NIR and XAFS analyses and density functional theory calculations revealed that the synthesized [PdAu8(PPh3)8][Mo6O19] (PdAu8-Mo6) and [PtAu8(PPh3)8][Mo6O19] (PtAu8-Mo6) had PdAu8-B and PtAu8-B respectively because PdAu8-Mo6 and PtAu8-Mo6 had bands in optical absorption at the longer wavelength region and different structural parameters characteristic of the butterfly-motif structure obtained by XAFS analysis. Single-crystal and powder X-ray diffraction analyses revealed that PdAu8-B and PtAu8-B were surrounded by six Mo6 with rock salt-type packing, which stabilizes the semi-stable butterfly-motif structure to overcome high activation energy for structural isomerization.

19.
Chemistry ; 29(49): e202300706, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37293845

ABSTRACT

Nitrobenzene (NB) is a highly toxic chemical and a cause for concern to human health and the environment. Hence, it is worth designing new efficient and robust sensing platforms for NB. In this study, we present three newly synthesized luminescent silver cluster-based coordination polymers, {[Ag10 (StBu)6 (CF3 COO)4 (hpbt)] (DMAc)2 (CH3 CN)2 }n (hpbt=N,N,N',N'N",N"-hexa(pyridine-4-yl)benzene-1,3,5-triamine), [Ag12 (StBu)6 (CF3 COO)6 (bpva)3 ]n (bpva=9,10-Bis(2-(pyridin-4-yl)vinyl)anthracene), and {[Ag12 (StBu)6 (CF3 COO)6 (bpb)(DMAc)2 (H2 O)2 ] (DMAc)2 }n (bpb=1,4-Bis(4-pyridyl)benzene) composed of Ag10 , Ag12 and Ag12 cluster cores, respectively, connected by multidentate pyridine linkers. In addition, two new luminescent polymorphic silver(I)-based coordination polymers, [Ag(CF3 COO)(dpa)]n (dpa=9,10-di(4-pyridyl)anthracene) referred to as Agdpa (H) and Agdpa (R), where H and R denote hexagon- and rod-like crystal shapes, respectively, have been prepared. The coordination polymers exhibit highly sensitive luminescence quenching effects to NB, attributed to the π-π stacking interactions between the polymers and NB as well as the electron-withdrawing character of NB.

20.
Sci Technol Adv Mater ; 24(1): 2203832, 2023.
Article in English | MEDLINE | ID: mdl-37251258

ABSTRACT

Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.

SELECTION OF CITATIONS
SEARCH DETAIL